Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

General solution as sin x+cosx=min[1,a24a+6]x + \cos x = min [1, a^2 - 4a + 6] is aR a \in R

A

nπ2+(1)nπ4n\frac{\pi}{2}+(-1)^n\frac{\pi}{4}

B

2nπ2+(1)nπ42n\pi2+(-1)^n\frac{\pi}{4}

C

nπ+(1)n+1π4n\pi+(-1)^{n+1}\frac{\pi}{4}

D

nπ+(1)n+1π4π4n\pi+(-1)^{n+1}\frac{\pi}{4}-\frac{\pi}{4}

Answer

nπ+(1)n+1π4π4n\pi+(-1)^{n+1}\frac{\pi}{4}-\frac{\pi}{4}

Explanation

Solution

Given that, \sin x + \cos {x =\underset{\text{a \in R }}{ {min}}} 1,a24a+6\\{ 1 , a^2 - 4a +6\\} Now, a24a+6=(a2)2+2a^2 - 4a + 6 = ( a - 2)^2 + 2 \therefore {\underset{\text{a \in R }}{ {min}}} 1,a24a+6\\{ 1 , a^2 - 4a +6\\} = min {1,2} = 1 \therefore sinx+cosx=1\sin x + \cos x= 1 \Rightarrow sin(x+π4)=12\sin\left( x+ \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}} \Rightarrow x+π4=nπ+(1)nπ4x+ \frac{\pi}{4} = n \pi + (-1)^n \, \frac{\pi}{4} \Rightarrow x=nπ+(1)nπ4π4x = n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{4}