Question
Mathematics Question on Trigonometric Functions
General solution as sin x+cosx=min[1,a2−4a+6] is a∈R
A
n2π+(−1)n4π
B
2nπ2+(−1)n4π
C
nπ+(−1)n+14π
D
nπ+(−1)n+14π−4π
Answer
nπ+(−1)n+14π−4π
Explanation
Solution
Given that, \sin x + \cos {x =\underset{\text{a ∈ R }}{ {min}}} 1,a2−4a+6 Now, a2−4a+6=(a−2)2+2 ∴ {\underset{\text{a ∈ R }}{ {min}}} 1,a2−4a+6 = min {1,2} = 1 ∴ sinx+cosx=1 ⇒ sin(x+4π)=21 ⇒ x+4π=nπ+(−1)n4π ⇒ x=nπ+(−1)n4π−4π