Solveeit Logo

Question

Question: General second-degree equation in x and y is \(a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0\) , where ...

General second-degree equation in x and y is ax2+2hxy+by2+2gx+2fy+c=0a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0 , where a, h, b, g, f, and c are constant.
Prove that conditions for it to be a circle is a=ba = b and h=0h = 0.

Explanation

Solution

At first we will take a general equation of the circle i.e. (xa)2+(yb)2=r2{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {r^2} , with center (a,b)(a,b) and radius ‘r’. Now, we will simplify this equation to compare it with the given second-degree equation.
On comparing, we get the results that if a=ba = b and h=0h = 0 , then the second-degree equation ax2+2hxy+by2+2gx+2fy+c=0a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0 forms a circle.

Complete step-by-step answer:
Given data: Second-degree equation i.e. ax2+2hxy+by2+2gx+2fy+c=0a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0
We know that the general equation of a circle with center (a,b)(a,b) and radius ‘r’ is given by
(xa)2+(yb)2=r2\Rightarrow {\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {r^2}
Using (xy)2=x2+y22xy{\left( {x - y} \right)^2} = {x^2} + {y^2} - 2xy , we get,
x2+a22xa+y2+b22yb=r2\Rightarrow {x^2} + {a^2} - 2xa + {y^2} + {b^2} - 2yb = {r^2}
On simplifying we get,
x2+y22xa2yb+a2+b2r2=0\Rightarrow {x^2} + {y^2} - 2xa - 2yb + {a^2} + {b^2} - {r^2} = 0
On comparing this equation with a second-degree equation i.e. ax2+2hxy+by2+2gx+2fy+c=0a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0
We can say that a=ba = b and h=0h = 0
Hence we proved that if a=ba = b and h=0h = 0 , then the second-degree equation ax2+2hxy+by2+2gx+2fy+c=0a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0 forms a circle.

Note: An alternate method for the above solution can be
Solving for the second-degree equation i.e. ax2+2hxy+by2+2gx+2fy+c=0a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0
ax2+2hxy+by2+2gx+2fy+c=0\Rightarrow a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0
Now for a=ba = b and h=0h = 0
ax2+ay2+2gx+2fy+c=0\Rightarrow a{x^2} + a{y^2} + 2gx + 2fy + c = 0
Dividing the whole equation with ‘a’
x2+y2+2gax+2fay+ca=0\Rightarrow {x^2} + {y^2} + 2\dfrac{g}{a}x + 2\dfrac{f}{a}y + \dfrac{c}{a} = 0
Now adding and subtracting (ga)2{\left( {\dfrac{g}{a}} \right)^2} and (fa)2{\left( {\dfrac{f}{a}} \right)^2} on the left-hand side of the equation
x2+2gax+(ga)2+y2+2fay+(fa)2+ca(ga)2(fa)2=0\Rightarrow {x^2} + 2\dfrac{g}{a}x + {\left( {\dfrac{g}{a}} \right)^2} + {y^2} + 2\dfrac{f}{a}y + {\left( {\dfrac{f}{a}} \right)^2} + \dfrac{c}{a} - {\left( {\dfrac{g}{a}} \right)^2} - {\left( {\dfrac{f}{a}} \right)^2} = 0
Now using x2+y2+2xy=(x+y)2{x^2} + {y^2} + 2xy = {\left( {x + y} \right)^2}
(x+ga)2+(y+fa)2+ca(ga)2(fa)2=0\Rightarrow {\left( {x + \dfrac{g}{a}} \right)^2} + {\left( {y + \dfrac{f}{a}} \right)^2} + \dfrac{c}{a} - {\left( {\dfrac{g}{a}} \right)^2} - {\left( {\dfrac{f}{a}} \right)^2} = 0
On taking the constant term to the right-hand side
(x+ga)2+(y+fa)2=(ga)2+(fa)2ca\Rightarrow {\left( {x + \dfrac{g}{a}} \right)^2} + {\left( {y + \dfrac{f}{a}} \right)^2} = {\left( {\dfrac{g}{a}} \right)^2} + {\left( {\dfrac{f}{a}} \right)^2} - \dfrac{c}{a}
Now using x2=x\sqrt {{x^2}} = x
(x+ga)2+(y+fa)2=((ga)2+(fa)2ca)2\Rightarrow {\left( {x + \dfrac{g}{a}} \right)^2} + {\left( {y + \dfrac{f}{a}} \right)^2} = {\left( {\sqrt {{{\left( {\dfrac{g}{a}} \right)}^2} + {{\left( {\dfrac{f}{a}} \right)}^2} - \dfrac{c}{a}} } \right)^2}
Since it is an equation of a circle with center (ga,fa)\left( { - \dfrac{g}{a}, - \dfrac{f}{a}} \right) and radius (ga)2+(fa)2ca\sqrt {{{\left( {\dfrac{g}{a}} \right)}^2} + {{\left( {\dfrac{f}{a}} \right)}^2} - \dfrac{c}{a}}
Hence we proved that if a=ba = b and h=0h = 0 , then the second-degree equation ax2+2hxy+by2+2gx+2fy+c=0a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0 forms a circle