Question
Question: Game for value of $\frac{Sin 2A + Sin 4A + Sin 6A}{7}$...
Game for value of 7Sin2A+Sin4A+Sin6A

7sin4A(2cos2A+1)
Solution
To simplify the given expression 7sin2A+sin4A+sin6A, we can use trigonometric sum-to-product identities.
Step 1: Group the terms in the numerator and apply the sum-to-product formula. The sum-to-product formula for sinx+siny is 2sin(2x+y)cos(2x−y). Let's group sin2A and sin6A: sin2A+sin6A=2sin(22A+6A)cos(22A−6A) =2sin(28A)cos(2−4A) =2sin(4A)cos(−2A) Since cos(−x)=cosx, we have: sin2A+sin6A=2sin(4A)cos(2A)
Step 2: Substitute this back into the numerator of the original expression. The numerator is sin2A+sin4A+sin6A. Substituting the result from Step 1: Numerator=2sin(4A)cos(2A)+sin4A
Step 3: Factor out the common term sin4A. Numerator=sin4A(2cos2A+1)
Step 4: Write down the complete simplified expression. The given expression is: 7sin2A+sin4A+sin6A=7sin4A(2cos2A+1)
This is the simplified form of the expression. Without any specific value or condition for 'A', the expression cannot be simplified to a numerical constant.
Alternatively, one could recognize the numerator as a sum of sines in an arithmetic progression. The sum of n terms of sin(α+(k−1)β) is given by Sn=sin(β/2)sin(nβ/2)sin(α+(n−1)β/2). Here, α=2A, β=2A, and n=3. Numerator=sin(2A/2)sin(3⋅2A/2)sin(2A+(3−1)2A/2) =sin(A)sin(3A)sin(2A+2A) =sin(A)sin(3A)sin(4A) Thus, the expression is 7sin(A)sin(3A)sin(4A). Both forms are equivalent, as 2cos(2A)+1=sin(A)sin(3A).
The final answer is 7sin4A(2cos2A+1).
Explanation:
The problem requires simplifying a trigonometric expression. We used the sum-to-product identity sinx+siny=2sin(2x+y)cos(2x−y) on the terms sin2A and sin6A. This resulted in 2sin4Acos2A. Adding the remaining term sin4A and factoring out sin4A led to the simplified numerator sin4A(2cos2A+1). The denominator remains 7.
Answer:
The value of the expression is 7sin4A(2cos2A+1).