Solveeit Logo

Question

Question: Game for value of $\frac{Sin 2A + Sin 4A + Sin 6A}{7}$...

Game for value of Sin2A+Sin4A+Sin6A7\frac{Sin 2A + Sin 4A + Sin 6A}{7}

Answer

sin4A(2cos2A+1)7\frac{\sin 4A (2 \cos 2A + 1)}{7}

Explanation

Solution

To simplify the given expression sin2A+sin4A+sin6A7\frac{\sin 2A + \sin 4A + \sin 6A}{7}, we can use trigonometric sum-to-product identities.

Step 1: Group the terms in the numerator and apply the sum-to-product formula. The sum-to-product formula for sinx+siny\sin x + \sin y is 2sin(x+y2)cos(xy2)2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right). Let's group sin2A\sin 2A and sin6A\sin 6A: sin2A+sin6A=2sin(2A+6A2)cos(2A6A2)\sin 2A + \sin 6A = 2 \sin\left(\frac{2A+6A}{2}\right) \cos\left(\frac{2A-6A}{2}\right) =2sin(8A2)cos(4A2)= 2 \sin\left(\frac{8A}{2}\right) \cos\left(\frac{-4A}{2}\right) =2sin(4A)cos(2A)= 2 \sin(4A) \cos(-2A) Since cos(x)=cosx\cos(-x) = \cos x, we have: sin2A+sin6A=2sin(4A)cos(2A)\sin 2A + \sin 6A = 2 \sin(4A) \cos(2A)

Step 2: Substitute this back into the numerator of the original expression. The numerator is sin2A+sin4A+sin6A\sin 2A + \sin 4A + \sin 6A. Substituting the result from Step 1: Numerator=2sin(4A)cos(2A)+sin4A\text{Numerator} = 2 \sin(4A) \cos(2A) + \sin 4A

Step 3: Factor out the common term sin4A\sin 4A. Numerator=sin4A(2cos2A+1)\text{Numerator} = \sin 4A (2 \cos 2A + 1)

Step 4: Write down the complete simplified expression. The given expression is: sin2A+sin4A+sin6A7=sin4A(2cos2A+1)7\frac{\sin 2A + \sin 4A + \sin 6A}{7} = \frac{\sin 4A (2 \cos 2A + 1)}{7}

This is the simplified form of the expression. Without any specific value or condition for 'A', the expression cannot be simplified to a numerical constant.

Alternatively, one could recognize the numerator as a sum of sines in an arithmetic progression. The sum of nn terms of sin(α+(k1)β)\sin(\alpha + (k-1)\beta) is given by Sn=sin(nβ/2)sin(β/2)sin(α+(n1)β/2)S_n = \frac{\sin(n\beta/2)}{\sin(\beta/2)} \sin(\alpha + (n-1)\beta/2). Here, α=2A\alpha = 2A, β=2A\beta = 2A, and n=3n=3. Numerator=sin(32A/2)sin(2A/2)sin(2A+(31)2A/2)\text{Numerator} = \frac{\sin(3 \cdot 2A/2)}{\sin(2A/2)} \sin(2A + (3-1)2A/2) =sin(3A)sin(A)sin(2A+2A)= \frac{\sin(3A)}{\sin(A)} \sin(2A + 2A) =sin(3A)sin(4A)sin(A)= \frac{\sin(3A)\sin(4A)}{\sin(A)} Thus, the expression is sin(3A)sin(4A)7sin(A)\frac{\sin(3A)\sin(4A)}{7\sin(A)}. Both forms are equivalent, as 2cos(2A)+1=sin(3A)sin(A)2\cos(2A)+1 = \frac{\sin(3A)}{\sin(A)}.

The final answer is sin4A(2cos2A+1)7\boxed{\frac{\sin 4A (2 \cos 2A + 1)}{7}}.

Explanation:

The problem requires simplifying a trigonometric expression. We used the sum-to-product identity sinx+siny=2sin(x+y2)cos(xy2)\sin x + \sin y = 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) on the terms sin2A\sin 2A and sin6A\sin 6A. This resulted in 2sin4Acos2A2 \sin 4A \cos 2A. Adding the remaining term sin4A\sin 4A and factoring out sin4A\sin 4A led to the simplified numerator sin4A(2cos2A+1)\sin 4A (2 \cos 2A + 1). The denominator remains 77.

Answer:

The value of the expression is sin4A(2cos2A+1)7\frac{\sin 4A (2 \cos 2A + 1)}{7}.