Solveeit Logo

Question

Physics Question on Motion in a plane

Galileo writes that for angles of projection of a projectile at angles (45+θ)\left(45^{\circ}+\theta\right) and (45θ)\left(45^{\circ}-\theta\right), the horizontal ranges described by the projectile are in the ratio

A

2:12:1

B

1:21:2

C

1:11:1

D

2:32:3

Answer

1:11:1

Explanation

Solution

Horizontal range R=u2sin2θgR=\frac{u^{2} \sin 2 \theta}{g} Rsin2θ\Rightarrow R \propto \sin 2 \theta R1sin2(45+θ)\therefore R_{1} \propto \sin 2\left(45^{\circ}+\theta\right) R1sin(90+2θ)R_{1} \propto \sin \left(90^{\circ}+2 \theta\right) Similarly, R2sin(902θ)R_{2} \propto \sin \left(90^{\circ}-2 \theta\right) sin(90+2θ)=cos2θ\because \sin \left(90^{\circ}+2 \theta\right)=\cos 2 \theta sin(902θ)=cos2θ\because \sin \left(90^{\circ}-2 \theta\right)=\cos 2 \theta so, R1R2=11\frac{R_{1}}{R_{2}}=\frac{1}{1} or R1:R2=1:1R_{1}: R_{2}=1: 1