Solveeit Logo

Question

Question: A rocket of mass m = 20 kg has M = 180kg fuel. The uniform exhaust velocity of the fuel is $v_r$ = 1...

A rocket of mass m = 20 kg has M = 180kg fuel. The uniform exhaust velocity of the fuel is vrv_r = 1.6 km/s. (i) Calculate the minimum rate of consumption of fuel so that the rocket may rise from the ground. (ii) Also calculate the maximum vertical speed gained by the rocket when the rate of consumption of fuel μ\mu is (g = 10 m/s²) & (ln 10 = 2.30)

Answer

The minimum rate of consumption of fuel is 1.25 kg/s. The maximum vertical speed gained is 2780 m/s for μ\mu = 2 kg/s and 3590 m/s for μ\mu = 20 kg/s.

Explanation

Solution

Part (i): Minimum rate of consumption of fuel so that the rocket may rise from the ground.

For the rocket to lift off from the ground, the upward thrust force must be at least equal to the initial weight of the rocket. The thrust force (FtF_t) is given by the product of the rate of fuel consumption (μ=dmdt\mu = -\frac{dm}{dt}) and the exhaust velocity relative to the rocket (vrv_r). Ft=μvrF_t = \mu v_r

The initial total mass of the rocket is M0=mrocket+mfuel=20 kg+180 kg=200 kgM_0 = m_{rocket} + m_{fuel} = 20 \text{ kg} + 180 \text{ kg} = 200 \text{ kg}. The initial gravitational force is Fg=M0gF_g = M_0 g.

For lift-off, FtFgF_t \ge F_g. The minimum rate of fuel consumption (μmin\mu_{min}) occurs when Ft=FgF_t = F_g. μminvr=M0g\mu_{min} v_r = M_0 g μmin=M0gvr\mu_{min} = \frac{M_0 g}{v_r}

Given: M0=200 kgM_0 = 200 \text{ kg}, g=10 m/s2g = 10 \text{ m/s}^2, vr=1.6 km/s=1600 m/sv_r = 1.6 \text{ km/s} = 1600 \text{ m/s}. μmin=200 kg×10 m/s21600 m/s=20001600 kg/s=2016 kg/s=54 kg/s=1.25 kg/s\mu_{min} = \frac{200 \text{ kg} \times 10 \text{ m/s}^2}{1600 \text{ m/s}} = \frac{2000}{1600} \text{ kg/s} = \frac{20}{16} \text{ kg/s} = \frac{5}{4} \text{ kg/s} = 1.25 \text{ kg/s}.

The minimum rate of consumption of fuel is 1.25 kg/s.

Part (ii): Maximum vertical speed gained by the rocket when the rate of consumption of fuel μ\mu is given.

The equation of motion for a rocket moving vertically upwards under gravity is: mdvdt=Ftmgm \frac{dv}{dt} = F_t - mg mdvdt=μvrmgm \frac{dv}{dt} = \mu v_r - mg where m(t)m(t) is the instantaneous mass, v(t)v(t) is the instantaneous velocity, μ=dmdt\mu = -\frac{dm}{dt} is the constant rate of fuel consumption, and vrv_r is the exhaust velocity. Rearranging and integrating from t=0t=0 (velocity v=0v=0, mass M0M_0) to time TT when fuel is exhausted (velocity vfv_f, mass mrocketm_{rocket}): dv=(μvrmg)dtdv = \left(\frac{\mu v_r}{m} - g\right) dt Since μ=dmdt\mu = -\frac{dm}{dt} is constant, dt=dmμdt = -\frac{dm}{\mu}. Also, m(t)=M0μtm(t) = M_0 - \mu t, so t=M0mμt = \frac{M_0 - m}{\mu}. The burn time is T=M0mrocketμT = \frac{M_0 - m_{rocket}}{\mu}.

Integrating the equation of motion: 0vfdv=0TμvrM0μtdt0Tgdt\int_{0}^{v_f} dv = \int_{0}^{T} \frac{\mu v_r}{M_0 - \mu t} dt - \int_{0}^{T} g dt vf=μvr0TdtM0μtg0Tdtv_f = \mu v_r \int_{0}^{T} \frac{dt}{M_0 - \mu t} - g \int_{0}^{T} dt For the first integral, let u=M0μtu = M_0 - \mu t, du=μdtdu = -\mu dt. When t=0t=0, u=M0u=M_0. When t=Tt=T, u=M0μT=mrocketu=M_0-\mu T = m_{rocket}. 0TdtM0μt=M0mrocketdu/μu=1μ[lnu]M0mrocket=1μ(lnmrocketlnM0)=1μln(M0mrocket)\int_{0}^{T} \frac{dt}{M_0 - \mu t} = \int_{M_0}^{m_{rocket}} \frac{-du/\mu}{u} = -\frac{1}{\mu} [\ln|u|]_{M_0}^{m_{rocket}} = -\frac{1}{\mu} (\ln m_{rocket} - \ln M_0) = \frac{1}{\mu} \ln\left(\frac{M_0}{m_{rocket}}\right). The second integral is 0Tgdt=gT\int_{0}^{T} g dt = gT.

So, vf=μvr(1μln(M0mrocket))gT=vrln(M0mrocket)gTv_f = \mu v_r \left(\frac{1}{\mu} \ln\left(\frac{M_0}{m_{rocket}}\right)\right) - gT = v_r \ln\left(\frac{M_0}{m_{rocket}}\right) - gT. The burn time T=mfuelμ=M0mrocketμT = \frac{m_{fuel}}{\mu} = \frac{M_0 - m_{rocket}}{\mu}. vf=vrln(M0mrocket)gM0mrocketμv_f = v_r \ln\left(\frac{M_0}{m_{rocket}}\right) - g \frac{M_0 - m_{rocket}}{\mu}.

Given: mrocket=20 kgm_{rocket} = 20 \text{ kg}, M0=200 kgM_0 = 200 \text{ kg}, vr=1600 m/sv_r = 1600 \text{ m/s}, g=10 m/s2g = 10 \text{ m/s}^2, ln10=2.30\ln 10 = 2.30. M0mrocket=20020=10\frac{M_0}{m_{rocket}} = \frac{200}{20} = 10. vrln(M0mrocket)=1600ln(10)=1600×2.30=3680 m/sv_r \ln\left(\frac{M_0}{m_{rocket}}\right) = 1600 \ln(10) = 1600 \times 2.30 = 3680 \text{ m/s}. M0mrocket=20020=180 kgM_0 - m_{rocket} = 200 - 20 = 180 \text{ kg}.

The formula for the maximum vertical speed (at the end of the burn) is vf=368010×180μv_f = 3680 - 10 \times \frac{180}{\mu}.

(a) μ=2 kg/s\mu = 2 \text{ kg/s} vf=368010×1802=368010×90=3680900=2780 m/sv_f = 3680 - 10 \times \frac{180}{2} = 3680 - 10 \times 90 = 3680 - 900 = 2780 \text{ m/s}.

(b) μ=20 kg/s\mu = 20 \text{ kg/s} vf=368010×18020=368010×9=368090=3590 m/sv_f = 3680 - 10 \times \frac{180}{20} = 3680 - 10 \times 9 = 3680 - 90 = 3590 \text{ m/s}.

The maximum vertical speed gained is 2780 m/s for μ=2\mu = 2 kg/s and 3590 m/s for μ=20\mu = 20 kg/s.