Question
Question: f(x)=\(\lim_{n \rightarrow \infty}\){sinx + 2sin<sup>2</sup>x + 3sin<sup>3</sup>x +...+ n sin<sup>n<...
f(x)=limn→∞{sinx + 2sin2x + 3sin3x +...+ n sinnx}. If x ¹ np + 2π, n Ī I, then limx→π/2[(1–sinx)2f(x)]sinx–11is equal to :
A
1
B
0
C
e
D
e2
Answer
e
Explanation
Solution
f(x) = (1–sinx)2sinx
Now limx→π/2 [(1–sinx)2f(x)]sinx–11
= limx→π/2(sinx)sinx–11
= elimx→π/2sinx–1sinx–1 = e