Solveeit Logo

Question

Question: f(x)=\(\lim_{n \rightarrow \infty}\){sinx + 2sin<sup>2</sup>x + 3sin<sup>3</sup>x +...+ n sin<sup>n<...

f(x)=limn\lim_{n \rightarrow \infty}{sinx + 2sin2x + 3sin3x +...+ n sinnx}. If x ¹ np + π2\frac{\pi}{2}, n Ī I, then limxπ/2[(1sinx)2f(x)]1sinx1\lim_{x \rightarrow \pi/2}\lbrack(1–\sin x)^{2}f(x)\rbrack^{\frac{1}{\sin x–1}}is equal to :

A

1

B

0

C

e

D

e2

Answer

e

Explanation

Solution

f(x) = sinx(1sinx)2\frac{\sin x}{(1–\sin x)^{2}}

Now limxπ/2\lim_{x \rightarrow \pi/2} [(1sinx)2f(x)]1sinx1\lbrack(1–\sin x)^{2}f(x)\rbrack^{\frac{1}{\sin x–1}}

= limxπ/2(sinx)1sinx1\lim_{x \rightarrow \pi/2}(\sin x)^{\frac{1}{\sin x–1}}

= elimxπ/2sinx1sinx1e^{\lim_{x \rightarrow \pi/2}\frac{\sin x–1}{\sin x–1}} = e