Solveeit Logo

Question

Question: Determine the domain of the function \[ f(x)=\frac{1}{\sqrt{(x-2)^{2023}\,(x-3)^{2024}\,(x-4)^{2025...

Determine the domain of the function

f(x)=1(x2)2023(x3)2024(x4)2025f(x)=\frac{1}{\sqrt{(x-2)^{2023}\,(x-3)^{2024}\,(x-4)^{2025}}}
Answer
(,2)    (4,)(-\infty,\,2)\;\cup\;(4,\,\infty)
Explanation

Solution

Step 1: Identify restrictions

  • The expression under the square root must be positive (cannot be zero or negative).
  • Exponents:
    • (x2)2023(x-2)^{2023}: odd exponent ⇒ sign of (x2)(x-2) carries over.
    • (x3)2024(x-3)^{2024}: even exponent ⇒ always nonnegative, but zero at x=3x=3 (excluded).
    • (x4)2025(x-4)^{2025}: odd exponent ⇒ sign of (x4)(x-4) carries over.

Step 2: Exclude zeros of factors

  • x2,3,4x\neq2,3,4 to avoid zero denominator.

Step 3: Positivity condition
We require

(x2)2023(x4)2025>0(x-2)^{2023}\,(x-4)^{2025} > 0

since (x3)2024>0(x-3)^{2024}>0 for all x3x\neq3.

Because both exponents are odd, this simplifies to

(x2)(x4)>0.(x-2)\,(x-4) > 0.

Solve (x2)(x4)>0(x-2)(x-4)>0:

  • Both factors positive     x>4\implies x>4.
  • Both factors negative     x<2\implies x<2.

Step 4: Combine intervals
Exclude the points 2,3,42,3,4. The domain is

(,2)    (4,).(-\infty,2)\;\cup\;(4,\infty).