Solveeit Logo

Question

Question: $f(x)=\begin{cases} x^3 & 2x^2+1 & 1+3x \\ 3x^2+2 & 2x & x^3+6 \\ x^3-x & 4 & x^2-2 \end{cases}$ $2...

f(x)={x32x2+11+3x3x2+22xx3+6x3x4x22f(x)=\begin{cases} x^3 & 2x^2+1 & 1+3x \\ 3x^2+2 & 2x & x^3+6 \\ x^3-x & 4 & x^2-2 \end{cases}

2f(0)+f(0)=?2f(0)+f'(0)=?

Answer

42

Explanation

Solution

To find the value of 2f(0)+f(0)2f(0)+f'(0), we need to first calculate f(0)f(0) and f(0)f'(0).

The given function is a determinant: f(x)=x32x2+11+3x3x2+22xx3+6x3x4x22f(x)=\begin{vmatrix} x^3 & 2x^2+1 & 1+3x \\ 3x^2+2 & 2x & x^3+6 \\ x^3-x & 4 & x^2-2 \end{vmatrix}

Step 1: Calculate f(0)f(0)

Substitute x=0x=0 into the determinant: f(0)=032(0)2+11+3(0)3(0)2+22(0)03+60304022=011206042f(0)=\begin{vmatrix} 0^3 & 2(0)^2+1 & 1+3(0) \\ 3(0)^2+2 & 2(0) & 0^3+6 \\ 0^3-0 & 4 & 0^2-2 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 1 \\ 2 & 0 & 6 \\ 0 & 4 & -2 \end{vmatrix}

Expanding the determinant along the first column (C1): f(0)=0cofactor(0)21142+0cofactor(0)f(0) = 0 \cdot \text{cofactor}(0) - 2 \cdot \begin{vmatrix} 1 & 1 \\ 4 & -2 \end{vmatrix} + 0 \cdot \text{cofactor}(0) f(0)=2((1)(2)(1)(4))=2(24)=2(6)=12f(0) = -2 \cdot ((1)(-2) - (1)(4)) = -2 \cdot (-2 - 4) = -2 \cdot (-6) = 12

Step 2: Calculate f(0)f'(0)

The derivative of a determinant is the sum of determinants obtained by differentiating one row (or column) at a time.

Let A(x)=(aij(x))A(x) = (a_{ij}(x)). Then A(x)A'(x) is the sum of three determinants, where in each determinant, one row is replaced by its derivatives, and the other rows remain unchanged.

First, find the derivatives of each element: a11(x)=x3    a11(x)=3x2a_{11}(x) = x^3 \implies a'_{11}(x) = 3x^2 a12(x)=2x2+1    a12(x)=4xa_{12}(x) = 2x^2+1 \implies a'_{12}(x) = 4x a13(x)=1+3x    a13(x)=3a_{13}(x) = 1+3x \implies a'_{13}(x) = 3

a21(x)=3x2+2    a21(x)=6xa_{21}(x) = 3x^2+2 \implies a'_{21}(x) = 6x a22(x)=2x    a22(x)=2a_{22}(x) = 2x \implies a'_{22}(x) = 2 a23(x)=x3+6    a23(x)=3x2a_{23}(x) = x^3+6 \implies a'_{23}(x) = 3x^2

a31(x)=x3x    a31(x)=3x21a_{31}(x) = x^3-x \implies a'_{31}(x) = 3x^2-1 a32(x)=4    a32(x)=0a_{32}(x) = 4 \implies a'_{32}(x) = 0 a33(x)=x22    a33(x)=2xa_{33}(x) = x^2-2 \implies a'_{33}(x) = 2x

Now, evaluate the elements and their derivatives at x=0x=0:

Original elements at x=0x=0: Row 1: (0,1,1)(0, 1, 1) Row 2: (2,0,6)(2, 0, 6) Row 3: (0,4,2)(0, 4, -2)

Derivatives of elements at x=0x=0: Row 1: (0,0,3)(0, 0, 3) Row 2: (0,2,0)(0, 2, 0) Row 3: (1,0,0)(-1, 0, 0)

Now, form the three determinants for f(0)f'(0): f(0)=a11(0)a12(0)a13(0)a21(0)a22(0)a23(0)a31(0)a32(0)a33(0)+a11(0)a12(0)a13(0)a21(0)a22(0)a23(0)a31(0)a32(0)a33(0)+a11(0)a12(0)a13(0)a21(0)a22(0)a23(0)a31(0)a32(0)a33(0)f'(0) = \begin{vmatrix} a'_{11}(0) & a'_{12}(0) & a'_{13}(0) \\ a_{21}(0) & a_{22}(0) & a_{23}(0) \\ a_{31}(0) & a_{32}(0) & a_{33}(0) \end{vmatrix} + \begin{vmatrix} a_{11}(0) & a_{12}(0) & a_{13}(0) \\ a'_{21}(0) & a'_{22}(0) & a'_{23}(0) \\ a_{31}(0) & a_{32}(0) & a_{33}(0) \end{vmatrix} + \begin{vmatrix} a_{11}(0) & a_{12}(0) & a_{13}(0) \\ a_{21}(0) & a_{22}(0) & a_{23}(0) \\ a'_{31}(0) & a'_{32}(0) & a'_{33}(0) \end{vmatrix}

f(0)=003206042+011020042+011206100f'(0) = \begin{vmatrix} 0 & 0 & 3 \\ 2 & 0 & 6 \\ 0 & 4 & -2 \end{vmatrix} + \begin{vmatrix} 0 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 4 & -2 \end{vmatrix} + \begin{vmatrix} 0 & 1 & 1 \\ 2 & 0 & 6 \\ -1 & 0 & 0 \end{vmatrix}

Calculate each determinant:

  1. D1=003206042D_1 = \begin{vmatrix} 0 & 0 & 3 \\ 2 & 0 & 6 \\ 0 & 4 & -2 \end{vmatrix} Expand along R1: D1=32004=3(2400)=38=24D_1 = 3 \cdot \begin{vmatrix} 2 & 0 \\ 0 & 4 \end{vmatrix} = 3 \cdot (2 \cdot 4 - 0 \cdot 0) = 3 \cdot 8 = 24

  2. D2=011020042D_2 = \begin{vmatrix} 0 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 4 & -2 \end{vmatrix} Since the first column (C1) consists entirely of zeros, the determinant is 0. D2=0D_2 = 0

  3. D3=011206100D_3 = \begin{vmatrix} 0 & 1 & 1 \\ 2 & 0 & 6 \\ -1 & 0 & 0 \end{vmatrix} Expand along R3: D3=111060cofactor+0cofactorD_3 = -1 \cdot \begin{vmatrix} 1 & 1 \\ 0 & 6 \end{vmatrix} - 0 \cdot \text{cofactor} + 0 \cdot \text{cofactor} D3=1(1610)=16=6D_3 = -1 \cdot (1 \cdot 6 - 1 \cdot 0) = -1 \cdot 6 = -6

Summing these determinants: f(0)=D1+D2+D3=24+0+(6)=18f'(0) = D_1 + D_2 + D_3 = 24 + 0 + (-6) = 18

Step 3: Calculate 2f(0)+f(0)2f(0) + f'(0)

Substitute the values of f(0)f(0) and f(0)f'(0): 2f(0)+f(0)=2(12)+18=24+18=422f(0) + f'(0) = 2(12) + 18 = 24 + 18 = 42

Therefore, the final answer is 42.