Solveeit Logo

Question

Question: \(f(x) = xe^{x(1 - x)}\) then \(f(x)\) is...

f(x)=xex(1x)f(x) = xe^{x(1 - x)} then f(x)f(x) is

A

Increasing on [12,1]\left\lbrack \frac{- 1}{2},1 \right\rbrack

B

Decreasing on R

C

Increasing on R

D

Decreasing on [12,1]\left\lbrack \frac{- 1}{2},1 \right\rbrack

Answer

Increasing on [12,1]\left\lbrack \frac{- 1}{2},1 \right\rbrack

Explanation

Solution

f(x)=ex(1x)+x.ex(1x).(12x)f^{'}(x) = e^{x(1 - x)} + x.e^{x(1 - x)}.(1 - 2x)

= ex(1x){1+x(12x)}=ex(1x).(2x2+x+1)e^{x(1 - x)}\{ 1 + x(1 - 2x)\} = e^{x(1 - x)}.( - 2x^{2} + x + 1) Now by the sign-scheme for 2x2+x+1- 2x^{2} + x + 1

f(x)0,f^{'}(x) \geq 0, if x[12,1]x \in \left\lbrack - \frac{1}{2},1 \right\rbrack, because ex(1x)e^{x(1 - x)} is always positive. So, f(x)f(x) is increasing on [12,1]\left\lbrack - \frac{1}{2},1 \right\rbrack.