Solveeit Logo

Question

Question: $f(x) = x^2 + ax + b$, has one of its zeroes as $\frac{4+3\sqrt{3}}{2+\sqrt{3}}$ where a and b are i...

f(x)=x2+ax+bf(x) = x^2 + ax + b, has one of its zeroes as 4+332+3\frac{4+3\sqrt{3}}{2+\sqrt{3}} where a and b are integers.

g(x)=x4+2x310x2+4x10g(x) = x^4 + 2x^3 - 10x^2 + 4x - 10 is a biquadratic such that g(4+332+3)=c3+dg(\frac{4+3\sqrt{3}}{2+\sqrt{3}}) = c\sqrt{3} + d, where c and d are integers.

let M=a+b+c+dM = |a| + |b| + |c| + |d|.

Then what is the Sum of the AP with first term 'b', common difference 'd' and no. of terms being M.

Answer

-351

Explanation

Solution

  1. Simplify the given root: Let x0=4+332+3x_0 = \frac{4+3\sqrt{3}}{2+\sqrt{3}}. Rationalize the denominator: x0=(4+33)(23)(2+3)(23)=843+63922(3)2=1+2343=1+23x_0 = \frac{(4+3\sqrt{3})(2-\sqrt{3})}{(2+\sqrt{3})(2-\sqrt{3})} = \frac{8 - 4\sqrt{3} + 6\sqrt{3} - 9}{2^2 - (\sqrt{3})^2} = \frac{-1 + 2\sqrt{3}}{4-3} = -1 + 2\sqrt{3}.

  2. Find coefficients aa and bb for f(x)f(x): f(x)=x2+ax+bf(x) = x^2 + ax + b, where a,bZa, b \in \mathbb{Z}. Since 1+23-1 + 2\sqrt{3} is a root and coefficients are integers, its conjugate 123-1 - 2\sqrt{3} must also be a root. Sum of roots: (1+23)+(123)=2(-1 + 2\sqrt{3}) + (-1 - 2\sqrt{3}) = -2. From Vieta's formulas, sum of roots =a= -a. So, a=2    a=2-a = -2 \implies a = 2. Product of roots: (1+23)(123)=(1)2(23)2=112=11(-1 + 2\sqrt{3})(-1 - 2\sqrt{3}) = (-1)^2 - (2\sqrt{3})^2 = 1 - 12 = -11. From Vieta's formulas, product of roots =b= b. So, b=11b = -11. Thus, f(x)=x2+2x11f(x) = x^2 + 2x - 11.

  3. Evaluate g(x)g(x) at the root x0x_0: Let x=x0=1+23x = x_0 = -1 + 2\sqrt{3}. From f(x)=0f(x)=0, we have x2+2x11=0x^2 + 2x - 11 = 0, which implies x2=2x+11x^2 = -2x + 11. We can divide g(x)g(x) by x2+2x11x^2 + 2x - 11: g(x)=x4+2x310x2+4x10g(x) = x^4 + 2x^3 - 10x^2 + 4x - 10. Using polynomial division or substitution: g(x)=(x2+1)(x2+2x11)+(2x+1)g(x) = (x^2 + 1)(x^2 + 2x - 11) + (2x + 1). Since x02+2x011=0x_0^2 + 2x_0 - 11 = 0: g(x0)=(x02+1)(0)+(2x0+1)=2x0+1g(x_0) = (x_0^2 + 1)(0) + (2x_0 + 1) = 2x_0 + 1. Substitute x0=1+23x_0 = -1 + 2\sqrt{3}: g(x0)=2(1+23)+1=2+43+1=431g(x_0) = 2(-1 + 2\sqrt{3}) + 1 = -2 + 4\sqrt{3} + 1 = 4\sqrt{3} - 1.

  4. Find coefficients cc and dd: We are given g(x0)=c3+dg(x_0) = c\sqrt{3} + d, where c,dZc, d \in \mathbb{Z}. Comparing 4314\sqrt{3} - 1 with c3+dc\sqrt{3} + d, we get c=4c = 4 and d=1d = -1.

  5. Calculate MM: M=a+b+c+dM = |a| + |b| + |c| + |d| M=2+11+4+1=2+11+4+1=18M = |2| + |-11| + |4| + |-1| = 2 + 11 + 4 + 1 = 18.

  6. Calculate the sum of the AP: The AP has: First term = b=11b = -11. Common difference = d=1d = -1. Number of terms = M=18M = 18. The sum of an AP is Sn=n2[2×first term+(n1)×common difference]S_n = \frac{n}{2}[2 \times \text{first term} + (n-1) \times \text{common difference}]. S18=182[2(11)+(181)(1)]S_{18} = \frac{18}{2}[2(-11) + (18-1)(-1)] S18=9[22+(17)(1)]S_{18} = 9[-22 + (17)(-1)] S18=9[2217]S_{18} = 9[-22 - 17] S18=9[39]S_{18} = 9[-39] S18=351S_{18} = -351.