Solveeit Logo

Question

Question: \(f(x) = \sqrt{x - x^{2}} + \sqrt{4 + x} + \sqrt{4 - x}\lbrack - 4,\infty)\) equals –...

f(x)=xx2+4+x+4x[4,)f(x) = \sqrt{x - x^{2}} + \sqrt{4 + x} + \sqrt{4 - x}\lbrack - 4,\infty) equals –

A

1

B

0

C

½

D

2

Answer

½

Explanation

Solution

limn\lim _ { n \rightarrow \infty } [1213+1314++1n1n+1]\left[ \frac { 1 } { 2 } - \frac { 1 } { 3 } + \frac { 1 } { 3 } - \frac { 1 } { 4 } + \ldots + \frac { 1 } { \mathrm { n } } - \frac { 1 } { \mathrm { n } + 1 } \right] ⇒  12\frac { 1 } { 2 }