Solveeit Logo

Question

Question: \(f(x) = \sin^{2}x + \sin^{2}{}\left( x + \frac{\pi}{3} \right) + \cos x\cos\left( x + \frac{\pi}{3}...

f(x)=sin2x+sin2(x+π3)+cosxcos(x+π3)and g(54)=1,then (gof)(x)f(x) = \sin^{2}x + \sin^{2}{}\left( x + \frac{\pi}{3} \right) + \cos x\cos\left( x + \frac{\pi}{3} \right)\text{and }g\left( \frac{5}{4} \right) = 1,\text{then }(gof)(x) is equal to

A

1

B

–1

C

2

D

– 2

Answer

1

Explanation

Solution

[x]x\lbrack x\rbrack - x

= 1cos2x2+1cos(2x+2π/3)2+12{2cosxcos(x+π/3)}\frac{1 - \cos 2x}{2} + \frac{1 - \cos(2x + 2\pi ⥂ / ⥂ 3)}{2} + \frac{1}{2}\{ 2\cos x\cos(x + \pi/3)\}

= 12[1cos2x+1cos(2x+2π/3)+cos(2x+π/3)+cosπ/3]\frac{1}{2}\lbrack 1 - \cos 2x + 1 - \cos(2x + 2\pi ⥂ / ⥂ 3) + \cos(2x + \pi/3) + \cos\pi/3\rbrack

= 12[52{cos2x+cos(2x+2π3)}+cos(2x+π3)]\frac{1}{2}\left\lbrack \frac{5}{2} - \{\cos 2x + \cos\left( 2x + \frac{2\pi}{3} \right)\} + \cos\left( 2x + \frac{\pi}{3} \right) \right\rbrack

= 12[522cos(2x+π3)cosπ3+cos(2x+π3)]=5/4\frac{1}{2}\left\lbrack \frac{5}{2} - 2\cos\left( 2x + \frac{\pi}{3} \right)\cos\frac{\pi}{3} + \cos\left( 2x + \frac{\pi}{3} \right) \right\rbrack = 5/4 for all x.

gof(x)=g(f(x))=g(5/4)=1gof(x) = g(f(x)) = g(5/4) = 1 [\becauseg(5/4) =1 (given)]

Hence, 1x[x]\frac{1}{x - \lbrack x\rbrack} for all x.