Question
Question: \(f(x) = \sin^{2}x + \sin^{2}{}\left( x + \frac{\pi}{3} \right) + \cos x\cos\left( x + \frac{\pi}{3}...
f(x)=sin2x+sin2(x+3π)+cosxcos(x+3π)and g(45)=1,then (gof)(x) is equal to
A
1
B
–1
C
2
D
– 2
Answer
1
Explanation
Solution
[x]−x
= 21−cos2x+21−cos(2x+2π⥂/⥂3)+21{2cosxcos(x+π/3)}
= 21[1−cos2x+1−cos(2x+2π⥂/⥂3)+cos(2x+π/3)+cosπ/3]
= 21[25−{cos2x+cos(2x+32π)}+cos(2x+3π)]
= 21[25−2cos(2x+3π)cos3π+cos(2x+3π)]=5/4 for all x.
∴ gof(x)=g(f(x))=g(5/4)=1 [∵g(5/4) =1 (given)]
Hence, x−[x]1 for all x.