Solveeit Logo

Question

Question: f(x) = |sin x + cos x + tan x + cot x + sec x + csc x|...

f(x) = |sin x + cos x + tan x + cot x + sec x + csc x|

A

1

B

2

C

0

D

3

Answer

1

Explanation

Solution

Let u=sinx+cosxu = \sin x + \cos x. The range of uu is [2,2][-\sqrt{2}, \sqrt{2}]. We can rewrite the function as f(x)=u+2u1f(x) = |u + \frac{2}{u-1}|. Let g(u)=u+2u1g(u) = u + \frac{2}{u-1}. We need to find the minimum value of g(u)|g(u)|. The derivative g(u)=12(u1)2g'(u) = 1 - \frac{2}{(u-1)^2}. Setting g(u)=0g'(u)=0 gives u=1±2u = 1 \pm \sqrt{2}. The value u=1+2u = 1+\sqrt{2} is outside the range. The value u=12u = 1-\sqrt{2} is inside the range. At u=12u = 1-\sqrt{2}, g(u)=12+2(12)1=12+22=122=122g(u) = 1-\sqrt{2} + \frac{2}{(1-\sqrt{2})-1} = 1-\sqrt{2} + \frac{2}{-\sqrt{2}} = 1-\sqrt{2} - \sqrt{2} = 1-2\sqrt{2}. As u1u \to 1^-, g(u)g(u) \to -\infty. As u1+u \to 1^+, g(u)+g(u) \to +\infty. At u=2u = -\sqrt{2}, g(2)=2+221=2+2(2+1)(2)212=2+22+221=222+2=232g(-\sqrt{2}) = -\sqrt{2} + \frac{2}{-\sqrt{2}-1} = -\sqrt{2} + \frac{2(-\sqrt{2}+1)}{(-\sqrt{2})^2-1^2} = -\sqrt{2} + \frac{-2\sqrt{2}+2}{2-1} = -\sqrt{2} - 2\sqrt{2} + 2 = 2-3\sqrt{2}. At u=2u = \sqrt{2}, g(2)=2+221=2+2(2+1)(2)212=2+22+221=2+22+2=32+2g(\sqrt{2}) = \sqrt{2} + \frac{2}{\sqrt{2}-1} = \sqrt{2} + \frac{2(\sqrt{2}+1)}{(\sqrt{2})^2-1^2} = \sqrt{2} + \frac{2\sqrt{2}+2}{2-1} = \sqrt{2} + 2\sqrt{2} + 2 = 3\sqrt{2}+2. The range of g(u)g(u) for u[2,2]u \in [-\sqrt{2}, \sqrt{2}] (excluding u=±1u=\pm 1) is (,122][32+2,)(-\infty, 1-2\sqrt{2}] \cup [3\sqrt{2}+2, \infty). The minimum value of g(u)|g(u)| is 122=2211.828|1-2\sqrt{2}| = 2\sqrt{2}-1 \approx 1.828. The least integer less than or equal to 2212\sqrt{2}-1 is 11.