Solveeit Logo

Question

Question: F(x) = ![](https://cdn.pureessence.tech/canvas_372.png?top_left_x=300&top_left_y=0&width=300&height=...

F(x) = du on the interval (5p/4, 4p/3] is -

A

3/2 – 3\sqrt { 3 }/2

B

5432\frac { 5 - 4 \sqrt { 3 } } { 2 }

C

7432\frac { 7 - 4 \sqrt { 3 } } { 2 }

D

9432\frac { 9 - 4 \sqrt { 3 } } { 2 }

Answer

9432\frac { 9 - 4 \sqrt { 3 } } { 2 }

Explanation

Solution

We have F¢(x) = 3 sin x + 4 cos x. Since sin x and cos x assume negative values in the third quadrant, we have F¢(x) < 0 for all x Ī (5p/4, 4p/3) so F(x) assumes the least value at the point x = 4p/3. Thus the least value is

F(4p/3) = 04π/3(3sinu+4cosu)du\int _ { 0 } ^ { 4 \pi / 3 } ( 3 \sin u + 4 \cos u ) d u

= (–3 cos u + 4sinu)04π/34 \sin u ) \left. \right| _ { 0 } ^ { 4 \pi / 3 }

= –3 cos 4π3\frac { 4 \pi } { 3 }– (–3)

= 9432\frac { 9 - 4 \sqrt { 3 } } { 2 }