Question
Question: f(x) = ln|\frac{sin^{2025}x-1}{sin^{2025}x+1}|...
f(x) = ln|\frac{sin^{2025}x-1}{sin^{2025}x+1}|

Answer
The function can be simplified to: f(x)=ln(1+sin2025x1−sin2025x)
The domain of the function is all real numbers x such that x=2π+nπ, where n is an integer.
Explanation
Solution
The domain requires the argument of the logarithm to be positive: sin2025x+1sin2025x−1>0. This implies sin2025x=1 and sin2025x=−1, leading to −1<sinx<1, so x=2π+nπ. For −1<sin2025x<1, the term sin2025x+1sin2025x−1 is negative. Thus, its absolute value is −(sin2025x+1sin2025x−1)=1+sin2025x1−sin2025x. Therefore, f(x)=ln(1+sin2025x1−sin2025x).