Solveeit Logo

Question

Question: f(x) = ln|\frac{sin^{2025}x-1}{sin^{2025}x+1}|...

f(x) = ln|\frac{sin^{2025}x-1}{sin^{2025}x+1}|

Answer

The function can be simplified to: f(x)=ln(1sin2025x1+sin2025x)f(x) = \ln\left(\frac{1-\sin^{2025}x}{1+\sin^{2025}x}\right)

The domain of the function is all real numbers xx such that xπ2+nπx \neq \frac{\pi}{2} + n\pi, where nn is an integer.

Explanation

Solution

The domain requires the argument of the logarithm to be positive: sin2025x1sin2025x+1>0\left|\frac{\sin^{2025}x-1}{\sin^{2025}x+1}\right| > 0. This implies sin2025x1\sin^{2025}x \neq 1 and sin2025x1\sin^{2025}x \neq -1, leading to 1<sinx<1-1 < \sin x < 1, so xπ2+nπx \neq \frac{\pi}{2} + n\pi. For 1<sin2025x<1-1 < \sin^{2025}x < 1, the term sin2025x1sin2025x+1\frac{\sin^{2025}x-1}{\sin^{2025}x+1} is negative. Thus, its absolute value is (sin2025x1sin2025x+1)=1sin2025x1+sin2025x-\left(\frac{\sin^{2025}x-1}{\sin^{2025}x+1}\right) = \frac{1-\sin^{2025}x}{1+\sin^{2025}x}. Therefore, f(x)=ln(1sin2025x1+sin2025x)f(x) = \ln\left(\frac{1-\sin^{2025}x}{1+\sin^{2025}x}\right).