Solveeit Logo

Question

Question: f(x) = \(\lim_{n \rightarrow \infty}\) (2x + 4x<sup>3</sup> +……..+ 2<sup>n</sup>x <sup>2n–1</sup>) (...

f(x) = limn\lim_{n \rightarrow \infty} (2x + 4x3 +……..+ 2nx 2n–1) (0 < x < 1) then f(x)dx\int_{}^{}{f(x)dx} is equal to

A

log(11x2)\left( \frac{1}{\sqrt{1 - x^{2}}} \right) + c

B

log 12x2\sqrt{1 - 2x^{2}} + c

C

log(112x2)\left( \frac{1}{\sqrt{1 - 2x^{2}}} \right) + c

D

None of these

Answer

log(112x2)\left( \frac{1}{\sqrt{1 - 2x^{2}}} \right) + c

Explanation

Solution

Solve series

s = 2x + 4x3 +…+ 2nx2n–1 ® Total term (n) ® G.P.

s = 2(x) [(2x2)n1](2x21)\frac{\lbrack(2x^{2})^{n} - 1\rbrack}{(2x^{2} - 1)} ® first term = 2x

® C.R. = 2x2

s = (2x) (2x)[2nx2n1](2x21)\frac{(2x)\lbrack 2^{n}x^{2n} - 1\rbrack}{(2x^{2} - 1)}, n0<x<1{}_{n \rightarrow \infty}^{0 < x < 1} x2n ® 0

f(x) = s = 2x12x2\frac{2x}{1 - 2x^{2}}

so 2x12x2\int_{}^{}\frac{2x}{1 - 2x^{2}}dx put 1 – 2x2 = t

– 4x dx = dt

2x dx = – 1/2 dt

= – 12dtt\frac{1}{2}\int_{}^{}\frac{dt}{t}= – 12\frac{1}{2} log (t) + c

= – 12\frac{1}{2} log (1 – 2x2) + c

= log (112x2)\left( \frac{1}{\sqrt{1 - 2x^{2}}} \right) + c