Question
Question: f(x) = \(\lim_{n \rightarrow \infty}\) (2x + 4x<sup>3</sup> +……..+ 2<sup>n</sup>x <sup>2n–1</sup>) (...
f(x) = limn→∞ (2x + 4x3 +……..+ 2nx 2n–1) (0 < x < 1) then ∫f(x)dx is equal to
A
log(1−x21) + c
B
log 1−2x2 + c
C
log(1−2x21) + c
D
None of these
Answer
log(1−2x21) + c
Explanation
Solution
Solve series
s = 2x + 4x3 +…+ 2nx2n–1 ® Total term (n) ® G.P.
s = 2(x) (2x2−1)[(2x2)n−1] ® first term = 2x
® C.R. = 2x2
s = (2x) (2x2−1)(2x)[2nx2n−1], n→∞0<x<1 x2n ® 0
f(x) = s = 1−2x22x
so ∫1−2x22xdx put 1 – 2x2 = t
– 4x dx = dt
2x dx = – 1/2 dt
= – 21∫tdt= – 21 log (t) + c
= – 21 log (1 – 2x2) + c
= log (1−2x21) + c