Solveeit Logo

Question

Question: f(x) = \(\left| \begin{matrix} 2\cos^{2}2x & \sin 2x & - \sin x \\ \sin 2x & 2\sin^{2}x & \cos x \\ ...

f(x) = 2cos22xsin2xsinxsin2x2sin2xcosxsinxcosx0\left| \begin{matrix} 2\cos^{2}2x & \sin 2x & - \sin x \\ \sin 2x & 2\sin^{2}x & \cos x \\ \sin x & - \cos x & 0 \end{matrix} \right|The value of 0π/2f´(x)\int_{0}^{\pi/2}{f´(x)}

dx is equal to

A

–2

B

–1

C

2

D

0

Answer

0

Explanation

Solution

0π/2f´(x)dx\int_{0}^{\pi/2}{f´(x)dx} = f(π2)\left( \frac{\pi}{2} \right) – f(0) = 201020100\left| \begin{matrix} 2 & 0 & - 1 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{matrix} \right|200001010\left| \begin{matrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & - 1 & 0 \end{matrix} \right|

= 2 – 2 = 0