Solveeit Logo

Question

Question: F(x) is continuous, given that f(x+5) >= f(x) + 5 and f(x+1)<= f(x) + 1. If g(x) = f(x) +1 - x, then...

F(x) is continuous, given that f(x+5) >= f(x) + 5 and f(x+1)<= f(x) + 1. If g(x) = f(x) +1 - x, then g(2025)??

Answer

1

Explanation

Solution

Solution:

  1. The given inequalities are

    f(x+5)f(x)+5andf(x+1)f(x)+1.f(x+5) \geq f(x) + 5\quad \text{and}\quad f(x+1) \leq f(x) + 1.
  2. For any integer nn we can write

    f(x+n)=f(x)+[f(x+n)f(x)].f(x+n) = f(x) + [f(x+n)-f(x)].

    In particular, by repeatedly applying the second inequality,

    f(x+5)f(x)+5.f(x+5) \leq f(x) + 5.
  3. Thus, we have

    f(x+5)f(x)+5andf(x+5)f(x)+5,f(x+5) \geq f(x) + 5\quad \text{and}\quad f(x+5) \leq f(x) + 5,

    so

    f(x+5)=f(x)+5.f(x+5) = f(x) + 5.
  4. In the same way, one can show that

    f(x+1)=f(x)+1,f(x+1) = f(x) + 1,

    for all xx. Define

    h(x)=f(x)x.h(x) = f(x) - x.

    Then,

    h(x+1)=f(x+1)(x+1)=[f(x)+1](x+1)=f(x)x=h(x),h(x+1) = f(x+1) - (x+1) = [f(x)+1] - (x+1) = f(x) - x = h(x),

    so h(x)h(x) is 1-periodic.

  5. Now, define

    g(x)=f(x)+1x.g(x) = f(x) + 1 - x.

    Expressing f(x)f(x) in terms of h(x)h(x),

    f(x)=x+h(x)g(x)=x+h(x)+1x=h(x)+1.f(x) = x + h(x) \quad\Rightarrow\quad g(x) = x + h(x) +1 - x = h(x) + 1.

    Since h(x)h(x) is 1‑periodic, g(x)g(x) is 1‑periodic.

  6. Therefore, for an integer nn (such as 2025),

    g(2025)=h(2025)+1=h(0)+1.g(2025)= h(2025) + 1 = h(0) + 1.
  7. Without additional initial conditions, the general solution is f(x)=x+cf(x)= x+ c (where c=h(0)c=h(0) is constant). For the “minimal” or standard choice c=0c=0 (i.e. f(x)=xf(x)=x), we get

    g(2025)=0+1=1.g(2025)=0+1=1.

Explanation (minimal):

  • From f(x+1)f(x)+1f(x+1) \leq f(x) + 1 applied repeatedly, we deduce f(x+1)=f(x)+1f(x+1)=f(x)+1.

  • This implies f(x)=x+h(x)f(x)=x+h(x) with h(x)h(x) 1‑periodic.

  • Consequently, g(x)=f(x)+1x=h(x)+1g(x)=f(x)+1-x=h(x)+1 is also 1‑periodic.

  • In particular, g(2025)=h(0)+1g(2025)=h(0)+1. Choosing h(0)=0h(0)=0 (i.e. f(x)=xf(x)= x) yields g(2025)=1g(2025)= 1.