Solveeit Logo

Question

Question: $f(x)$ is a twice differentiable function such that $f(x)+f''(x) = -xg(x)f'(x), \quad g(x) \ge 0 \q...

f(x)f(x) is a twice differentiable function such that

f(x)+f(x)=xg(x)f(x),g(x)0x0f(x)+f''(x) = -xg(x)f'(x), \quad g(x) \ge 0 \quad \forall \quad x \ge 0 then:

A

If f(x)f(x) is an increasing function for x0x \ge 0, then f(1)f(1)f''(1) \le -f(1)

B

f(x)f(0)2+f(0)2|f(x)| \le \sqrt{f(0)^2 + f'(0)^2} for x0x \ge 0

C

f(a)(f(1)+f(0))+f(b)(f(0)+f(1))>0f'(a)(f(1) + f(0)) + f''(b) (f'(0) + f'(1)) > 0 for some a,b(0,1)a, b \in (0,1)

Answer

(1), (2)

Explanation

Solution

The problem asks us to determine which of the given statements are true for a twice differentiable function f(x)f(x) satisfying the differential equation f(x)+f(x)=xg(x)f(x)f(x)+f''(x) = -xg(x)f'(x), where g(x)0g(x) \ge 0 for all x0x \ge 0.

Let's analyze each statement:

Statement (1): If f(x)f(x) is an increasing function for x0x \ge 0, then f(1)f(1)f''(1) \le -f(1).

Given that f(x)f(x) is an increasing function for x0x \ge 0, it implies that f(x)0f'(x) \ge 0 for all x0x \ge 0. The given differential equation is f(x)+f(x)=xg(x)f(x)f(x)+f''(x) = -xg(x)f'(x). We are given x0x \ge 0 and g(x)0g(x) \ge 0. Since f(x)0f'(x) \ge 0, the product xg(x)f(x)0xg(x)f'(x) \ge 0. Therefore, xg(x)f(x)0-xg(x)f'(x) \le 0. Substituting this into the differential equation, we get: f(x)+f(x)0f(x)+f''(x) \le 0 for all x0x \ge 0. This can be rewritten as f(x)f(x)f''(x) \le -f(x) for all x0x \ge 0. Now, substitute x=1x=1 into this inequality: f(1)f(1)f''(1) \le -f(1). Thus, statement (1) is TRUE.

Statement (2): f(x)f(0)2+f(0)2|f(x)| \le \sqrt{f(0)^2 + f'(0)^2} for x0x \ge 0.

To prove this, let's consider the function h(x)=f(x)2+f(x)2h(x) = f(x)^2 + f'(x)^2. We want to show that h(x)h(0)h(x) \le h(0) for x0x \ge 0. Let's find the derivative of h(x)h(x) with respect to xx: h(x)=ddx(f(x)2+f(x)2)h'(x) = \frac{d}{dx}(f(x)^2 + f'(x)^2) h(x)=2f(x)f(x)+2f(x)f(x)h'(x) = 2f(x)f'(x) + 2f'(x)f''(x) Factor out 2f(x)2f'(x): h(x)=2f(x)(f(x)+f(x))h'(x) = 2f'(x)(f(x) + f''(x)) From the given differential equation, we know f(x)+f(x)=xg(x)f(x)f(x)+f''(x) = -xg(x)f'(x). Substitute this into the expression for h(x)h'(x): h(x)=2f(x)(xg(x)f(x))h'(x) = 2f'(x)(-xg(x)f'(x)) h(x)=2xg(x)(f(x))2h'(x) = -2xg(x)(f'(x))^2 We are given that x0x \ge 0 and g(x)0g(x) \ge 0. Also, (f(x))20(f'(x))^2 \ge 0 since it's a square. Therefore, the product 2xg(x)(f(x))2-2xg(x)(f'(x))^2 must be less than or equal to zero. So, h(x)0h'(x) \le 0 for all x0x \ge 0. Since h(x)0h'(x) \le 0, the function h(x)h(x) is a decreasing function for x0x \ge 0. This means that for any x0x \ge 0, h(x)h(0)h(x) \le h(0). Substituting back the definition of h(x)h(x): f(x)2+f(x)2f(0)2+f(0)2f(x)^2 + f'(x)^2 \le f(0)^2 + f'(0)^2 for x0x \ge 0. Since f(x)2f(x)2+f(x)2f(x)^2 \le f(x)^2 + f'(x)^2, it follows that: f(x)2f(0)2+f(0)2f(x)^2 \le f(0)^2 + f'(0)^2. Taking the square root of both sides (and remembering that y2=y\sqrt{y^2} = |y|): f(x)f(0)2+f(0)2|f(x)| \le \sqrt{f(0)^2 + f'(0)^2} for x0x \ge 0. Thus, statement (2) is TRUE.

Statement (3): f(a)(f(1)+f(0))+f(b)(f(0)+f(1))>0f'(a)(f(1) + f(0)) + f''(b) (f'(0) + f'(1)) > 0 for some a,b(0,1)a, b \in (0,1).

Since f(x)f(x) is twice differentiable, both f(x)f(x) and f(x)f'(x) are continuous on [0,1][0,1] and differentiable on (0,1)(0,1). By the Mean Value Theorem (MVT) for f(x)f(x) on [0,1][0,1], there exists some a(0,1)a \in (0,1) such that: f(a)=f(1)f(0)10=f(1)f(0)f'(a) = \frac{f(1) - f(0)}{1 - 0} = f(1) - f(0). By the Mean Value Theorem (MVT) for f(x)f'(x) on [0,1][0,1], there exists some b(0,1)b \in (0,1) such that: f(b)=f(1)f(0)10=f(1)f(0)f''(b) = \frac{f'(1) - f'(0)}{1 - 0} = f'(1) - f'(0). Now, substitute these expressions for f(a)f'(a) and f(b)f''(b) into the given statement's expression: f(a)(f(1)+f(0))+f(b)(f(0)+f(1))f'(a)(f(1) + f(0)) + f''(b) (f'(0) + f'(1)) =(f(1)f(0))(f(1)+f(0))+(f(1)f(0))(f(0)+f(1))= (f(1) - f(0))(f(1) + f(0)) + (f'(1) - f'(0))(f'(0) + f'(1)) Using the difference of squares formula, (AB)(A+B)=A2B2(A-B)(A+B) = A^2-B^2: =(f(1)2f(0)2)+(f(1)2f(0)2)= (f(1)^2 - f(0)^2) + (f'(1)^2 - f'(0)^2) Rearrange the terms: =(f(1)2+f(1)2)(f(0)2+f(0)2)= (f(1)^2 + f'(1)^2) - (f(0)^2 + f'(0)^2) Recall the function h(x)=f(x)2+f(x)2h(x) = f(x)^2 + f'(x)^2 from statement (2). So, the expression simplifies to h(1)h(0)h(1) - h(0). From the analysis of statement (2), we established that h(x)0h'(x) \le 0 for x0x \ge 0, which means h(x)h(x) is a decreasing function. Therefore, for x=1x=1 and x=0x=0, we must have h(1)h(0)h(1) \le h(0). This implies h(1)h(0)0h(1) - h(0) \le 0. So, the expression f(a)(f(1)+f(0))+f(b)(f(0)+f(1))f'(a)(f(1) + f(0)) + f''(b) (f'(0) + f'(1)) is less than or equal to zero. The statement claims that this expression is strictly greater than zero (>0>0). This contradicts our finding that it is 0\le 0. Thus, statement (3) is FALSE.

Based on the analysis, statements (1) and (2) are true, while statement (3) is false.

The final answer is (1),(2)\boxed{(1), (2)}.

Explanation of the solution:

  1. For statement (1): If f(x)f(x) is increasing, f(x)0f'(x) \ge 0. Given x0x \ge 0 and g(x)0g(x) \ge 0, the term xg(x)f(x)-xg(x)f'(x) in the differential equation f(x)+f(x)=xg(x)f(x)f(x)+f''(x) = -xg(x)f'(x) must be 0\le 0. This implies f(x)+f(x)0f(x)+f''(x) \le 0, or f(x)f(x)f''(x) \le -f(x). Setting x=1x=1 gives f(1)f(1)f''(1) \le -f(1).
  2. For statement (2): Define h(x)=f(x)2+f(x)2h(x) = f(x)^2 + f'(x)^2. Differentiate h(x)h(x) to get h(x)=2f(x)(f(x)+f(x))h'(x) = 2f'(x)(f(x)+f''(x)). Substitute the given differential equation: h(x)=2f(x)(xg(x)f(x))=2xg(x)(f(x))2h'(x) = 2f'(x)(-xg(x)f'(x)) = -2xg(x)(f'(x))^2. Since x0x \ge 0, g(x)0g(x) \ge 0, and (f(x))20(f'(x))^2 \ge 0, it follows that h(x)0h'(x) \le 0. This means h(x)h(x) is a decreasing function. Therefore, h(x)h(0)h(x) \le h(0) for x0x \ge 0, which translates to f(x)2+f(x)2f(0)2+f(0)2f(x)^2 + f'(x)^2 \le f(0)^2 + f'(0)^2. Since f(x)2f(x)2+f(x)2f(x)^2 \le f(x)^2 + f'(x)^2, we have f(x)2f(0)2+f(0)2f(x)^2 \le f(0)^2 + f'(0)^2. Taking the square root gives f(x)f(0)2+f(0)2|f(x)| \le \sqrt{f(0)^2 + f'(0)^2}.
  3. For statement (3): Apply the Mean Value Theorem. There exist a(0,1)a \in (0,1) such that f(a)=f(1)f(0)f'(a) = f(1)-f(0), and b(0,1)b \in (0,1) such that f(b)=f(1)f(0)f''(b) = f'(1)-f'(0). Substitute these into the expression: f(a)(f(1)+f(0))+f(b)(f(0)+f(1))=(f(1)f(0))(f(1)+f(0))+(f(1)f(0))(f(0)+f(1))f'(a)(f(1) + f(0)) + f''(b) (f'(0) + f'(1)) = (f(1)-f(0))(f(1)+f(0)) + (f'(1)-f'(0))(f'(0)+f'(1)). This simplifies to (f(1)2f(0)2)+(f(1)2f(0)2)=(f(1)2+f(1)2)(f(0)2+f(0)2)(f(1)^2 - f(0)^2) + (f'(1)^2 - f'(0)^2) = (f(1)^2+f'(1)^2) - (f(0)^2+f'(0)^2), which is h(1)h(0)h(1)-h(0). Since h(x)h(x) is a decreasing function, h(1)h(0)h(1) \le h(0), implying h(1)h(0)0h(1)-h(0) \le 0. Thus, the expression is 0\le 0, contradicting the statement that it is >0>0.