Question
Question: f(x) is a polynomial with positive integral coefficients such that f(1) = 12, f(12) = 2080 then find...
f(x) is a polynomial with positive integral coefficients such that f(1) = 12, f(12) = 2080 then find f(-1).

0
Solution
Let the polynomial be f(x)=anxn+an−1xn−1+⋯+a1x+a0. Given that the coefficients ai are positive integers, which means ai≥1 for all i=0,1,…,n.
1. Use the condition f(1)=12: Substituting x=1 into the polynomial: f(1)=an(1)n+an−1(1)n−1+⋯+a1(1)+a0 f(1)=an+an−1+⋯+a1+a0=12. This means the sum of all coefficients is 12. Since each ai≥1, the maximum number of terms (and thus the maximum degree n) is 12. If there are k terms, then k≤12. The degree n=k−1. So n≤11.
2. Use the condition f(12)=2080 to determine the degree of the polynomial: f(12)=an(12)n+an−1(12)n−1+⋯+a1(12)+a0=2080.
Let's test possible degrees for n:
-
Case 1: n=0 f(x)=a0. From f(1)=12, we have a0=12. Then f(12)=12. This contradicts f(12)=2080. So, n=0.
-
Case 2: n=1 f(x)=a1x+a0. From f(1)=12: a1+a0=12 (Equation 1) From f(12)=2080: 12a1+a0=2080 (Equation 2) Subtract (Equation 1) from (Equation 2): (12a1+a0)−(a1+a0)=2080−12 11a1=2068 a1=112068=188. Substitute a1=188 into (Equation 1): 188+a0=12⟹a0=12−188=−176. Since a0=−176 is not a positive integer, n=1.
-
Case 3: n=2 f(x)=a2x2+a1x+a0. From f(1)=12: a2+a1+a0=12 (Equation 3) From f(12)=2080: 144a2+12a1+a0=2080 (Equation 4) Subtract (Equation 3) from (Equation 4): (144a2+12a1+a0)−(a2+a1+a0)=2080−12 143a2+11a1=2068. Divide by 11: 13a2+a1=188. Since a1≥1, we have 13a2≤187⟹a2≤13187≈14.38. Also, since a0≥1, from (Equation 3), a2+a1≤11. Substitute a1=188−13a2 into a2+a1≤11: a2+(188−13a2)≤11 188−12a2≤11 177≤12a2 a2≥12177=14.75. This contradicts a2≤14.38. So, n=2.
-
Case 4: n=3 f(x)=a3x3+a2x2+a1x+a0. From f(1)=12: a3+a2+a1+a0=12 (Equation 5) From f(12)=2080: 123a3+122a2+12a1+a0=2080 1728a3+144a2+12a1+a0=2080 (Equation 6) Since a3≥1, 1728a3≤2080. This implies a3 must be 1. Substitute a3=1 into (Equation 6): 1728(1)+144a2+12a1+a0=2080 144a2+12a1+a0=2080−1728=352 (Equation 7) Substitute a3=1 into (Equation 5): 1+a2+a1+a0=12⟹a2+a1+a0=11 (Equation 8) Subtract (Equation 8) from (Equation 7): (144a2+12a1+a0)−(a2+a1+a0)=352−11 143a2+11a1=341. Divide by 11: 13a2+a1=31. Since a1≥1, 13a2≤30⟹a2≤1330≈2.3. So a2 can be 1 or 2.
- If a2=1: 13(1)+a1=31⟹a1=18. Substitute a2=1,a1=18 into (Equation 8): 1+18+a0=11⟹19+a0=11⟹a0=−8. Not a positive integer.
- If a2=2: 13(2)+a1=31⟹26+a1=31⟹a1=5. Substitute a2=2,a1=5 into (Equation 8): 2+5+a0=11⟹7+a0=11⟹a0=4. This is a positive integer. Thus, we found the coefficients: a3=1,a2=2,a1=5,a0=4. All are positive integers. The polynomial is f(x)=x3+2x2+5x+4.
-
Case 5: n≥4 If n=4, the term a4x4 would be a4(12)4=a4×20736. Even if a4=1, 20736>2080. So, the degree cannot be 4 or higher.
Therefore, the unique polynomial satisfying the given conditions is f(x)=x3+2x2+5x+4.
3. Calculate f(−1): Substitute x=−1 into the polynomial: f(−1)=(−1)3+2(−1)2+5(−1)+4 f(−1)=−1+2(1)−5+4 f(−1)=−1+2−5+4 f(−1)=1−5+4 f(−1)=−4+4 f(−1)=0.
The final answer is 0.