Solveeit Logo

Question

Question: f(x) is a polynomial with positive integral coefficients such that f(1) = 12, f(12) = 2080 then find...

f(x) is a polynomial with positive integral coefficients such that f(1) = 12, f(12) = 2080 then find f(-1).

Answer

0

Explanation

Solution

Let the polynomial be f(x)=anxn+an1xn1++a1x+a0f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0. Given that the coefficients aia_i are positive integers, which means ai1a_i \ge 1 for all i=0,1,,ni = 0, 1, \dots, n.

1. Use the condition f(1)=12f(1) = 12: Substituting x=1x=1 into the polynomial: f(1)=an(1)n+an1(1)n1++a1(1)+a0f(1) = a_n (1)^n + a_{n-1} (1)^{n-1} + \dots + a_1 (1) + a_0 f(1)=an+an1++a1+a0=12f(1) = a_n + a_{n-1} + \dots + a_1 + a_0 = 12. This means the sum of all coefficients is 12. Since each ai1a_i \ge 1, the maximum number of terms (and thus the maximum degree nn) is 12. If there are kk terms, then k12k \le 12. The degree n=k1n = k-1. So n11n \le 11.

2. Use the condition f(12)=2080f(12) = 2080 to determine the degree of the polynomial: f(12)=an(12)n+an1(12)n1++a1(12)+a0=2080f(12) = a_n (12)^n + a_{n-1} (12)^{n-1} + \dots + a_1 (12) + a_0 = 2080.

Let's test possible degrees for nn:

  • Case 1: n=0n=0 f(x)=a0f(x) = a_0. From f(1)=12f(1)=12, we have a0=12a_0=12. Then f(12)=12f(12) = 12. This contradicts f(12)=2080f(12)=2080. So, n0n \ne 0.

  • Case 2: n=1n=1 f(x)=a1x+a0f(x) = a_1 x + a_0. From f(1)=12f(1)=12: a1+a0=12a_1 + a_0 = 12 (Equation 1) From f(12)=2080f(12)=2080: 12a1+a0=208012a_1 + a_0 = 2080 (Equation 2) Subtract (Equation 1) from (Equation 2): (12a1+a0)(a1+a0)=208012(12a_1 + a_0) - (a_1 + a_0) = 2080 - 12 11a1=206811a_1 = 2068 a1=206811=188a_1 = \frac{2068}{11} = 188. Substitute a1=188a_1=188 into (Equation 1): 188+a0=12    a0=12188=176188 + a_0 = 12 \implies a_0 = 12 - 188 = -176. Since a0=176a_0 = -176 is not a positive integer, n1n \ne 1.

  • Case 3: n=2n=2 f(x)=a2x2+a1x+a0f(x) = a_2 x^2 + a_1 x + a_0. From f(1)=12f(1)=12: a2+a1+a0=12a_2 + a_1 + a_0 = 12 (Equation 3) From f(12)=2080f(12)=2080: 144a2+12a1+a0=2080144a_2 + 12a_1 + a_0 = 2080 (Equation 4) Subtract (Equation 3) from (Equation 4): (144a2+12a1+a0)(a2+a1+a0)=208012(144a_2 + 12a_1 + a_0) - (a_2 + a_1 + a_0) = 2080 - 12 143a2+11a1=2068143a_2 + 11a_1 = 2068. Divide by 11: 13a2+a1=18813a_2 + a_1 = 188. Since a11a_1 \ge 1, we have 13a2187    a21871314.3813a_2 \le 187 \implies a_2 \le \frac{187}{13} \approx 14.38. Also, since a01a_0 \ge 1, from (Equation 3), a2+a111a_2 + a_1 \le 11. Substitute a1=18813a2a_1 = 188 - 13a_2 into a2+a111a_2 + a_1 \le 11: a2+(18813a2)11a_2 + (188 - 13a_2) \le 11 18812a211188 - 12a_2 \le 11 17712a2177 \le 12a_2 a217712=14.75a_2 \ge \frac{177}{12} = 14.75. This contradicts a214.38a_2 \le 14.38. So, n2n \ne 2.

  • Case 4: n=3n=3 f(x)=a3x3+a2x2+a1x+a0f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0. From f(1)=12f(1)=12: a3+a2+a1+a0=12a_3 + a_2 + a_1 + a_0 = 12 (Equation 5) From f(12)=2080f(12)=2080: 123a3+122a2+12a1+a0=208012^3 a_3 + 12^2 a_2 + 12a_1 + a_0 = 2080 1728a3+144a2+12a1+a0=20801728a_3 + 144a_2 + 12a_1 + a_0 = 2080 (Equation 6) Since a31a_3 \ge 1, 1728a320801728a_3 \le 2080. This implies a3a_3 must be 1. Substitute a3=1a_3=1 into (Equation 6): 1728(1)+144a2+12a1+a0=20801728(1) + 144a_2 + 12a_1 + a_0 = 2080 144a2+12a1+a0=20801728=352144a_2 + 12a_1 + a_0 = 2080 - 1728 = 352 (Equation 7) Substitute a3=1a_3=1 into (Equation 5): 1+a2+a1+a0=12    a2+a1+a0=111 + a_2 + a_1 + a_0 = 12 \implies a_2 + a_1 + a_0 = 11 (Equation 8) Subtract (Equation 8) from (Equation 7): (144a2+12a1+a0)(a2+a1+a0)=35211(144a_2 + 12a_1 + a_0) - (a_2 + a_1 + a_0) = 352 - 11 143a2+11a1=341143a_2 + 11a_1 = 341. Divide by 11: 13a2+a1=3113a_2 + a_1 = 31. Since a11a_1 \ge 1, 13a230    a230132.313a_2 \le 30 \implies a_2 \le \frac{30}{13} \approx 2.3. So a2a_2 can be 1 or 2.

    • If a2=1a_2 = 1: 13(1)+a1=31    a1=1813(1) + a_1 = 31 \implies a_1 = 18. Substitute a2=1,a1=18a_2=1, a_1=18 into (Equation 8): 1+18+a0=11    19+a0=11    a0=81 + 18 + a_0 = 11 \implies 19 + a_0 = 11 \implies a_0 = -8. Not a positive integer.
    • If a2=2a_2 = 2: 13(2)+a1=31    26+a1=31    a1=513(2) + a_1 = 31 \implies 26 + a_1 = 31 \implies a_1 = 5. Substitute a2=2,a1=5a_2=2, a_1=5 into (Equation 8): 2+5+a0=11    7+a0=11    a0=42 + 5 + a_0 = 11 \implies 7 + a_0 = 11 \implies a_0 = 4. This is a positive integer. Thus, we found the coefficients: a3=1,a2=2,a1=5,a0=4a_3=1, a_2=2, a_1=5, a_0=4. All are positive integers. The polynomial is f(x)=x3+2x2+5x+4f(x) = x^3 + 2x^2 + 5x + 4.
  • Case 5: n4n \ge 4 If n=4n=4, the term a4x4a_4 x^4 would be a4(12)4=a4×20736a_4 (12)^4 = a_4 \times 20736. Even if a4=1a_4=1, 20736>208020736 > 2080. So, the degree cannot be 4 or higher.

Therefore, the unique polynomial satisfying the given conditions is f(x)=x3+2x2+5x+4f(x) = x^3 + 2x^2 + 5x + 4.

3. Calculate f(1)f(-1): Substitute x=1x=-1 into the polynomial: f(1)=(1)3+2(1)2+5(1)+4f(-1) = (-1)^3 + 2(-1)^2 + 5(-1) + 4 f(1)=1+2(1)5+4f(-1) = -1 + 2(1) - 5 + 4 f(1)=1+25+4f(-1) = -1 + 2 - 5 + 4 f(1)=15+4f(-1) = 1 - 5 + 4 f(1)=4+4f(-1) = -4 + 4 f(1)=0f(-1) = 0.

The final answer is 0\boxed{0}.