Question
Question: f(x) is a differentiable functionsuch that f(x)=x^2+integral 0tox e^-t f(x-t)dt then find f(x)...
f(x) is a differentiable functionsuch that f(x)=x^2+integral 0tox e^-t f(x-t)dt then find f(x)
Answer
f(x)=x^2+\frac{x^3}{3}
Explanation
Solution
Solution:
We are given
f(x)=x2+∫0xe−tf(x−t)dt.- Take Laplace transform:
Let L{f(x)}=F(s). Recall:
- L{x2}=s32,
- The Laplace transform of the convolution ∫0xe−tf(x−t)dt equals L{e−t}⋅F(s) and L{e−t}=s+11.
Thus, taking the Laplace transform of both sides,
F(s)=s32+s+11F(s).- Solve for F(s):
Simplify the factor:
1−s+11=s+1s.Then,
F(s)⋅s+1s=s32⇒F(s)=s32⋅ss+1=s42(s+1).- Inverse Laplace transform:
Express F(s) as:
F(s)=s42s+s42=s32+s42.Using known transforms:
- L−1{s32}=x2 (since L{x2}=s32),
- L−1{s42}=3x3 (since L{x3}=s46).
Therefore,
f(x)=x2+3x3.