Solveeit Logo

Question

Question: f(x) is a differentiable functionsuch that f(x)=x^2+integral 0tox e^-t f(x-t)dt then find f(x)...

f(x) is a differentiable functionsuch that f(x)=x^2+integral 0tox e^-t f(x-t)dt then find f(x)

Answer

f(x)=x^2+\frac{x^3}{3}

Explanation

Solution

Solution:

We are given

f(x)=x2+0xetf(xt)dt.f(x)=x^2+\int_0^x e^{-t}f(x-t)\,dt.
  1. Take Laplace transform:

Let L{f(x)}=F(s)\mathcal{L}\{f(x)\}=F(s). Recall:

  • L{x2}=2s3\mathcal{L}\{x^2\}=\frac{2}{s^3},
  • The Laplace transform of the convolution 0xetf(xt)dt\int_0^x e^{-t}f(x-t)\,dt equals L{et}F(s)\mathcal{L}\{e^{-t}\}\cdot F(s) and L{et}=1s+1\mathcal{L}\{e^{-t}\}=\frac{1}{s+1}.

Thus, taking the Laplace transform of both sides,

F(s)=2s3+1s+1F(s).F(s)=\frac{2}{s^3}+\frac{1}{s+1}F(s).
  1. Solve for F(s)F(s):
F(s)1s+1F(s)=2s3F(s)(11s+1)=2s3.F(s) - \frac{1}{s+1}F(s)=\frac{2}{s^3} \quad\Rightarrow\quad F(s)\left(1-\frac{1}{s+1}\right)=\frac{2}{s^3}.

Simplify the factor:

11s+1=ss+1.1-\frac{1}{s+1}=\frac{s}{s+1}.

Then,

F(s)ss+1=2s3F(s)=2s3s+1s=2(s+1)s4.F(s)\cdot\frac{s}{s+1}=\frac{2}{s^3}\quad\Rightarrow\quad F(s)=\frac{2}{s^3}\cdot\frac{s+1}{s}=\frac{2(s+1)}{s^4}.
  1. Inverse Laplace transform:

Express F(s)F(s) as:

F(s)=2ss4+2s4=2s3+2s4.F(s)=\frac{2s}{s^4}+\frac{2}{s^4}=\frac{2}{s^3}+\frac{2}{s^4}.

Using known transforms:

  • L1{2s3}=x2\mathcal{L}^{-1}\left\{\frac{2}{s^3}\right\}=x^2 (since L{x2}=2s3\mathcal{L}\{x^2\}=\frac{2}{s^3}),
  • L1{2s4}=x33\mathcal{L}^{-1}\left\{\frac{2}{s^4}\right\}=\frac{x^3}{3} (since L{x3}=6s4\mathcal{L}\{x^3\}=\frac{6}{s^4}).

Therefore,

f(x)=x2+x33.f(x)=x^2+\frac{x^3}{3}.