Solveeit Logo

Question

Question: f(x) = \(\int _ { 0 } ^ { x } \left| \log _ { 2 } \left( \log _ { 3 } \left( \log _ { 4 } ( \cos t ...

f(x) = 0xlog2(log3(log4(cost+a)))dt\int _ { 0 } ^ { x } \left| \log _ { 2 } \left( \log _ { 3 } \left( \log _ { 4 } ( \cos t + a ) \right) \right) \right| d t . If f(x) is increasing for all real values of x then

A

a ∈ (-1, 1)

B

a ∈ (1, 5)

C

a ∈ (1, ∞)

D

a ∈ (5, ∞)

Answer

a ∈ (5, ∞)

Explanation

Solution

f (x) = |log2 (log3 (log4 (cosx + a)))|. Clearly f(x) is increasing for all values of x if log2 (log3 (log4 (cosx + a))) is defined for all values of x.

⇒ log3 (log4 (cosx + a)) > 0 ∀ x ∈ R

⇒ log4 (cosx + a) > 1 ∀ x ∈ R

⇒ cosx + a > 4 ∀ x ∈ R

⇒ a > 5