Question
Question: f(x) = \(\int _ { 0 } ^ { x } \left| \log _ { 2 } \left( \log _ { 3 } \left( \log _ { 4 } ( \cos t ...
f(x) = ∫0x∣log2(log3(log4(cost+a)))∣dt . If f(x) is increasing for all real values of x then
A
a ∈ (-1, 1)
B
a ∈ (1, 5)
C
a ∈ (1, ∞)
D
a ∈ (5, ∞)
Answer
a ∈ (5, ∞)
Explanation
Solution
f (x) = |log2 (log3 (log4 (cosx + a)))|. Clearly f(x) is increasing for all values of x if log2 (log3 (log4 (cosx + a))) is defined for all values of x.
⇒ log3 (log4 (cosx + a)) > 0 ∀ x ∈ R
⇒ log4 (cosx + a) > 1 ∀ x ∈ R
⇒ cosx + a > 4 ∀ x ∈ R
⇒ a > 5