Solveeit Logo

Question

Question: f(x) = \(\int _ { 0 } ^ { x } \left( e ^ { t } - 1 \right) ( t - 1 ) ( \sin t - \cos t ) \sin t d t\...

f(x) = 0x(et1)(t1)(sintcost)sintdt\int _ { 0 } ^ { x } \left( e ^ { t } - 1 \right) ( t - 1 ) ( \sin t - \cos t ) \sin t d t, ∀ x ∈ (π2,2π)\left( - \frac { \pi } { 2 } , 2 \pi \right) then f(x) is decreasing in

A

(π2,0)(π4,1)(π,π4)\left( - \frac { \pi } { 2 } , 0 \right) \cup \left( \frac { \pi } { 4 } , 1 \right) \cup \left( \pi , \frac { \pi } { 4 } \right)

B

(π2,π4)(1,π)(5π4,2π)\left( - \frac { \pi } { 2 } , \frac { \pi } { 4 } \right) \cup ( 1 , \pi ) \cup \left( \frac { 5 \pi } { 4 } , 2 \pi \right)

C

(π4,1)(π,5π4)\left( \frac { \pi } { 4 } , 1 \right) \cup \left( \pi , \frac { 5 \pi } { 4 } \right)

D

(0,π4)(1,π)(5π4,2π)\left( 0 , \frac { \pi } { 4 } \right) \cup ( 1 , \pi ) \cup \left( \frac { 5 \pi } { 4 } , 2 \pi \right)

Answer

(π4,1)(π,5π4)\left( \frac { \pi } { 4 } , 1 \right) \cup \left( \pi , \frac { 5 \pi } { 4 } \right)

Explanation

Solution

f '(x) = (ex − 1) (x − 1) (sinx − cosx) sinx. Sign scheme of f '(x) is

clearly f(x) is increasing in and decreasing in (π4,1)(π,5π4)\left( \frac { \pi } { 4 } , 1 \right) \cup \left( \pi , \frac { 5 \pi } { 4 } \right)