Solveeit Logo

Question

Question: f(x) = \(\frac { ( x - 2 ) ( x - 1 ) } { ( x - 3 ) }\)∀ x \> 3. The minimum value of f(x) is equal ...

f(x) = (x2)(x1)(x3)\frac { ( x - 2 ) ( x - 1 ) } { ( x - 3 ) }∀ x > 3. The minimum value of f(x) is

equal to

A

3 + 22\sqrt{2}

B

3 + 23\sqrt{3}

C

32\sqrt{2}+ 2

D

) 32\sqrt{2}− 2

Answer

3 + 22\sqrt{2}

Explanation

Solution

Let x – 3 = t ⇒ x – 2 = (t +1), x – 1 = t + 2

⇒ f(x) = (x2)(x1)(x3)\frac { ( x - 2 ) ( x - 1 ) } { ( x - 3 ) } = f(x) = (t+1)(t+2)t\frac { ( t + 1 ) ( t + 2 ) } { t }

= (t2+3t+2)t\frac { \left( t ^ { 2 } + 3 t + 2 \right) } { t } = t + + 3 ≥ 3 + 222 \sqrt { 2 }

(using A.M. ≥ G.M. as t > 0)