Solveeit Logo

Question

Question: f(x) = \(\frac { x } { 1 + x \tan x }\), x ∈\(\left( 0 , \frac { \pi } { 2 } \right)\)then...

f(x) = x1+xtanx\frac { x } { 1 + x \tan x }, x ∈(0,π2)\left( 0 , \frac { \pi } { 2 } \right)then

A

f(x) has exactly one point of minima

B

f(x) has exactly one point of maxima

C

f(x) is increasing in(0,π2)\left( 0 , \frac { \pi } { 2 } \right)

D

f(x) is decreasing in(0,π2)\left( 0 , \frac { \pi } { 2 } \right)

Answer

f(x) has exactly one point of maxima

Explanation

Solution

f '(x) = 1x2sec2x(1+xtanx)2=sec2x(cosx+x)(cosxx)(1+xtanx)2\frac { 1 - x ^ { 2 } \sec ^ { 2 } x } { ( 1 + x \tan x ) ^ { 2 } } = \frac { \sec ^ { 2 } x ( \cos x + x ) ( \cos x - x ) } { ( 1 + x \tan x ) ^ { 2 } }

clearly f '(x0) = 0 and f'(x) > 0 ∀ x ∈ (0, x0)

f '(x) <0 ∀ x ∈ (x0, π/2). Thus x = x0 is the only point of local maxima for y = f(x).