Solveeit Logo

Question

Question: Determine the range of the function $f(x) = \frac{2025^{\tan x}}{45^{\tan x}+1}$....

Determine the range of the function f(x)=2025tanx45tanx+1f(x) = \frac{2025^{\tan x}}{45^{\tan x}+1}.

Answer

(0, \infty)

Explanation

Solution

To determine the range of the function f(x)=2025tanx45tanx+1f(x) = \frac{2025^{\tan x}}{45^{\tan x}+1}, we can follow these steps:

  1. Simplify the expression: Notice that 2025=4522025 = 45^2. Substitute this into the function: f(x)=(452)tanx45tanx+1=(45tanx)245tanx+1f(x) = \frac{(45^2)^{\tan x}}{45^{\tan x}+1} = \frac{(45^{\tan x})^2}{45^{\tan x}+1}

  2. Introduce a substitution: Let u=45tanxu = 45^{\tan x}. The function then becomes a function of uu: g(u)=u2u+1g(u) = \frac{u^2}{u+1}

  3. Determine the domain of the substituted variable uu: The domain of tanx\tan x is all real numbers, R\mathbb{R}. Since the base 45>045 > 0, the exponential function 45y45^y always produces positive values. Therefore, the range of u=45tanxu = 45^{\tan x} is (0,)(0, \infty). We need to find the range of g(u)g(u) for u(0,)u \in (0, \infty).

  4. Analyze the function g(u)g(u) for its range: We can analyze the behavior of g(u)g(u) by considering its derivative: g(u)=ddu(u2u+1)g'(u) = \frac{d}{du}\left(\frac{u^2}{u+1}\right) Using the quotient rule, g(u)=(2u)(u+1)(u2)(1)(u+1)2=2u2+2uu2(u+1)2=u2+2u(u+1)2=u(u+2)(u+1)2g'(u) = \frac{(2u)(u+1) - (u^2)(1)}{(u+1)^2} = \frac{2u^2 + 2u - u^2}{(u+1)^2} = \frac{u^2 + 2u}{(u+1)^2} = \frac{u(u+2)}{(u+1)^2}.

    For u(0,)u \in (0, \infty):

    • u>0u > 0
    • u+2>0u+2 > 0
    • (u+1)2>0(u+1)^2 > 0 Therefore, g(u)>0g'(u) > 0 for all u(0,)u \in (0, \infty). This indicates that g(u)g(u) is strictly increasing on its domain (0,)(0, \infty).

    Now, we evaluate the limits of g(u)g(u) as uu approaches the boundaries of its domain:

    • As u0+u \to 0^+: limu0+g(u)=limu0+u2u+1=020+1=0\lim_{u \to 0^+} g(u) = \lim_{u \to 0^+} \frac{u^2}{u+1} = \frac{0^2}{0+1} = 0
    • As uu \to \infty: limug(u)=limuu2u+1\lim_{u \to \infty} g(u) = \lim_{u \to \infty} \frac{u^2}{u+1} We can divide the numerator and denominator by uu: limuu1+1u=1+0=\lim_{u \to \infty} \frac{u}{1 + \frac{1}{u}} = \frac{\infty}{1+0} = \infty

    Since g(u)g(u) is strictly increasing on (0,)(0, \infty) and its limits at the boundaries are 00 and \infty, the range of g(u)g(u) for u(0,)u \in (0, \infty) is (0,)(0, \infty).

Therefore, the range of the function f(x)f(x) is (0,)(0, \infty).