Solveeit Logo

Question

Question: $f(x) = \frac{1}{x}log(\frac{1+3x}{1-2x})$ when $x \neq 0$ and $f(0) = k$. The value of $k$ so that ...

f(x)=1xlog(1+3x12x)f(x) = \frac{1}{x}log(\frac{1+3x}{1-2x}) when x0x \neq 0 and f(0)=kf(0) = k. The value of kk so that f(x)f(x) is continuous at x=0x = 0

A

5

B

-5

C

2

D

-2

Answer

5

Explanation

Solution

For f(x)f(x) to be continuous at x=0x=0, the limit of f(x)f(x) as xx approaches 00 must be equal to f(0)f(0). Given f(x)=1xlog(1+3x12x)f(x) = \frac{1}{x}\log\left(\frac{1+3x}{1-2x}\right) for x0x \neq 0, and f(0)=kf(0) = k. Thus, we need to find kk such that: k=limx01xlog(1+3x12x)k = \lim_{x \to 0} \frac{1}{x}\log\left(\frac{1+3x}{1-2x}\right)

Using the property of logarithms, log(ab)=logalogb\log\left(\frac{a}{b}\right) = \log a - \log b: k=limx0log(1+3x)log(12x)xk = \lim_{x \to 0} \frac{\log(1+3x) - \log(1-2x)}{x}

We can split this into two separate limits: k=limx0log(1+3x)xlimx0log(12x)xk = \lim_{x \to 0} \frac{\log(1+3x)}{x} - \lim_{x \to 0} \frac{\log(1-2x)}{x}

We use the standard limit: limu0log(1+u)u=1\lim_{u \to 0} \frac{\log(1+u)}{u} = 1.

For the first term: limx0log(1+3x)x=limx03log(1+3x)3x\lim_{x \to 0} \frac{\log(1+3x)}{x} = \lim_{x \to 0} 3 \cdot \frac{\log(1+3x)}{3x} Let y=3xy = 3x. As x0x \to 0, y0y \to 0. 3limy0log(1+y)y=31=33 \lim_{y \to 0} \frac{\log(1+y)}{y} = 3 \cdot 1 = 3.

For the second term: limx0log(12x)x=limx0(2)log(12x)2x\lim_{x \to 0} \frac{\log(1-2x)}{x} = \lim_{x \to 0} (-2) \cdot \frac{\log(1-2x)}{-2x} Let z=2xz = -2x. As x0x \to 0, z0z \to 0. 2limz0log(1+z)z=21=2-2 \lim_{z \to 0} \frac{\log(1+z)}{z} = -2 \cdot 1 = -2.

Substituting these values back: k=3(2)=3+2=5k = 3 - (-2) = 3 + 2 = 5.

Therefore, the value of kk that makes f(x)f(x) continuous at x=0x=0 is 5.