Question
Question: $$f(x) = \begin{vmatrix} \sec x & \cos x & \sec^2x + \cot x \csc x + \cos x \\ \cos^2 x & \cos^2 x &...
f(x)=secxcos2x1cosxcos2xcos2xsec2x+cotxcscx+cosxcsc2x+cos4xcos2x

Answer
f(x)=-\sin^2x-\cos^3x.
Explanation
Solution
We wish to evaluate
f(x)=secxcos2x1cosxcos2xcos2xsec2x+cotxcscx+cosxcsc2x+cos4xcos2x.Step 1. Subtract the 2nd column from the 3rd
Replace C3 by C3−C2. Then the entries in C3 become:
- Row 1: sec2x+cotxcscx+cosx−cosx=sec2x+cotxcscx.
- Row 2: csc2x+cos4x−cos2x.
Note that cos4x−cos2x=cos2x(cos2x−1)=−cos2xsin2x. So this entry becomes csc2x−cos2xsin2x. - Row 3: cos2x−cos2x=0.
Thus the matrix is now
secxcos2x1cosxcos2xcos2xsec2x+cotxcscxcsc2x−cos2xsin2x0.Step 2. Expand the Determinant along the 3rd Row
The 3rd row is [1, cos2x, 0]. Using cofactor expansion, we have
f(x)=1⋅M31−cos2x⋅M32+0⋅M33,where
M31=cosxcos2xsec2x+cotxcscxcsc2x−cos2xsin2x,and
M32=secxcos2xsec2x+cotxcscxcsc2x−cos2xsin2x.Calculating these 2×2 determinants:
- M31=cosx(csc2x−cos2xsin2x)−(sec2x+cotxcscx)cos2x,
- M32=secx(csc2x−cos2xsin2x)−(sec2x+cotxcscx)cos2x.
Thus
f(x)=cosx(csc2x−cos2xsin2x)−cos2x(sec2x+cotxcscx)−cos2x[secx(csc2x−cos2xsin2x)−(sec2x+cotxcscx)cos2x].Notice that the two parts containing csc2x−cos2xsin2x combine as
cosx−cos2xsecx.But since secx=cosx1, we have
cos2xsecx=cos2x⋅cosx1=cosx.Thus the terms cancel. We are left with
f(x)=−cos2x(sec2x+cotxcscx)+cos2x⋅cos2x(sec2x+cotxcscx).Factor out cos2x(sec2x+cotxcscx):
f(x)=−cos2x(sec2x+cotxcscx)(1−cos2x).Since 1−cos2x=sin2x, we obtain
f(x)=−cos2xsin2x(sec2x+cotxcscx).Step 3. Simplify the Expression in Parentheses
Recall that
sec2x=cos2x1,cotxcscx=sin2xcosx.Thus
sec2x+cotxcscx=cos2x1+sin2xcosx.Plug this in:
f(x)=−cos2xsin2x(cos2x1+sin2xcosx).Separate the terms:
f(x)=−sin2x−cos2xsin2x⋅sin2xcosx.The second term simplifies as
cos2xsin2x⋅sin2xcosx=cos3x.Thus
f(x)=−sin2x−cos3x.