Solveeit Logo

Question

Question: $$f(x) = \begin{vmatrix} \sec x & \cos x & \sec^2x + \cot x \csc x + \cos x \\ \cos^2 x & \cos^2 x &...

f(x)=secxcosxsec2x+cotxcscx+cosxcos2xcos2xcsc2x+cos4x1cos2xcos2xf(x) = \begin{vmatrix} \sec x & \cos x & \sec^2x + \cot x \csc x + \cos x \\ \cos^2 x & \cos^2 x & \csc^2x + \cos^4x \\ 1 & \cos^2 x & \cos^2 x \end{vmatrix}

Answer

f(x)=-\sin^2x-\cos^3x.

Explanation

Solution

We wish to evaluate

f(x)=secxcosxsec2x+cotxcscx+cosxcos2xcos2xcsc2x+cos4x1cos2xcos2x.f(x)=\begin{vmatrix} \sec x & \cos x & \sec^2x+\cot x\,\csc x+\cos x\\[1mm] \cos^2x & \cos^2x & \csc^2x+\cos^4x\\[1mm] 1 & \cos^2x & \cos^2x \end{vmatrix}.

Step 1. Subtract the 2nd column from the 3rd

Replace C3C_3 by C3C2C_3 - C_2. Then the entries in C3C_3 become:

  • Row 1: sec2x+cotxcscx+cosxcosx=sec2x+cotxcscx\sec^2x+\cot x\,\csc x+\cos x - \cos x =\sec^2x+\cot x\,\csc x.
  • Row 2: csc2x+cos4xcos2x\csc^2x+\cos^4x-\cos^2x.
    Note that cos4xcos2x=cos2x(cos2x1)=cos2xsin2x\cos^4x-\cos^2x=\cos^2x(\cos^2x-1)=-\cos^2x\sin^2x. So this entry becomes csc2xcos2xsin2x\csc^2x-\cos^2x\sin^2x.
  • Row 3: cos2xcos2x=0\cos^2x-\cos^2x=0.

Thus the matrix is now

secxcosxsec2x+cotxcscxcos2xcos2xcsc2xcos2xsin2x1cos2x0.\begin{vmatrix} \sec x & \cos x & \sec^2x+\cot x\,\csc x\\[1mm] \cos^2x & \cos^2x & \csc^2x-\cos^2x\sin^2x\\[1mm] 1 & \cos^2x & 0 \end{vmatrix}.

Step 2. Expand the Determinant along the 3rd Row

The 3rd row is [1, cos2x, 0][1,\ \cos^2x,\ 0]. Using cofactor expansion, we have

f(x)=1M31cos2xM32+0M33,f(x)= 1\cdot M_{31} -\cos^2x\cdot M_{32}+0\cdot M_{33},

where

M31=cosxsec2x+cotxcscxcos2xcsc2xcos2xsin2x,M_{31}=\begin{vmatrix} \cos x & \sec^2x+\cot x\,\csc x \\[1mm] \cos^2x & \csc^2x-\cos^2x\sin^2x \end{vmatrix},

and

M32=secxsec2x+cotxcscxcos2xcsc2xcos2xsin2x.M_{32}=\begin{vmatrix} \sec x & \sec^2x+\cot x\,\csc x \\[1mm] \cos^2x & \csc^2x-\cos^2x\sin^2x \end{vmatrix}.

Calculating these 2×2 determinants:

  • M31=cosx(csc2xcos2xsin2x)(sec2x+cotxcscx)cos2x,M_{31}=\cos x\Bigl(\csc^2x-\cos^2x\sin^2x\Bigr) - (\sec^2x+\cot x\,\csc x)\cos^2x,
  • M32=secx(csc2xcos2xsin2x)(sec2x+cotxcscx)cos2x.M_{32}=\sec x\Bigl(\csc^2x-\cos^2x\sin^2x\Bigr) - (\sec^2x+\cot x\,\csc x)\cos^2x.

Thus

f(x)=cosx(csc2xcos2xsin2x)cos2x(sec2x+cotxcscx)cos2x[secx(csc2xcos2xsin2x)(sec2x+cotxcscx)cos2x].\begin{aligned} f(x) &=\cos x\Bigl(\csc^2x-\cos^2x\sin^2x\Bigr) - \cos^2x(\sec^2x+\cot x\,\csc x)\\[1mm] &\quad {} -\cos^2x\Bigl[\sec x\Bigl(\csc^2x-\cos^2x\sin^2x\Bigr) - (\sec^2x+\cot x\,\csc x)\cos^2x\Bigr]. \end{aligned}

Notice that the two parts containing csc2xcos2xsin2x\csc^2x-\cos^2x\sin^2x combine as

cosxcos2xsecx.\cos x - \cos^2x\sec x.

But since secx=1cosx\sec x=\frac{1}{\cos x}, we have

cos2xsecx=cos2x1cosx=cosx.\cos^2x\sec x=\cos^2x\cdot\frac{1}{\cos x}=\cos x.

Thus the terms cancel. We are left with

f(x)=cos2x(sec2x+cotxcscx)+cos2xcos2x(sec2x+cotxcscx).f(x) = -\cos^2x(\sec^2x+\cot x\,\csc x) + \cos^2x\cdot\cos^2x(\sec^2x+\cot x\,\csc x).

Factor out cos2x(sec2x+cotxcscx)\cos^2x(\sec^2x+\cot x\,\csc x):

f(x)=cos2x(sec2x+cotxcscx)(1cos2x).f(x) = -\cos^2x(\sec^2x+\cot x\,\csc x)\Bigl(1-\cos^2x\Bigr).

Since 1cos2x=sin2x1-\cos^2x=\sin^2x, we obtain

f(x)=cos2xsin2x(sec2x+cotxcscx).f(x) = -\cos^2x\,\sin^2x\Bigl(\sec^2x+\cot x\,\csc x\Bigr).

Step 3. Simplify the Expression in Parentheses

Recall that

sec2x=1cos2x,cotxcscx=cosxsin2x.\sec^2x=\frac{1}{\cos^2x},\qquad \cot x\,\csc x=\frac{\cos x}{\sin^2x}.

Thus

sec2x+cotxcscx=1cos2x+cosxsin2x.\sec^2x+\cot x\,\csc x=\frac{1}{\cos^2x}+\frac{\cos x}{\sin^2x}.

Plug this in:

f(x)=cos2xsin2x(1cos2x+cosxsin2x).f(x) = -\cos^2x\,\sin^2x\left(\frac{1}{\cos^2x}+\frac{\cos x}{\sin^2x}\right).

Separate the terms:

f(x)=sin2xcos2xsin2xcosxsin2x.f(x) = -\sin^2x -\cos^2x\,\sin^2x\cdot\frac{\cos x}{\sin^2x}.

The second term simplifies as

cos2xsin2xcosxsin2x=cos3x.\cos^2x\,\sin^2x\cdot\frac{\cos x}{\sin^2x}=\cos^3x.

Thus

f(x)=sin2xcos3x.f(x)=-\sin^2x-\cos^3x.