Solveeit Logo

Question

Question: F(x) = \(\begin{bmatrix} \cos x & - \sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}\)an...

F(x) = [cosxsinx0sinxcosx0001]\begin{bmatrix} \cos x & - \sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}and

G(x) = $\begin{bmatrix} \cos x & 0 & \sin x \ 0 & 1 & 0 \

  • \sin x & 0 & \cos x \end{bmatrix}$, then [F(x) G(y)]–1 is equal to –
A

F(–x ) G (–y)

B

F(x –1) G(y –1)

C

G (–y) F(–x)

D

G(y –1) F (x–1)

Answer

G (–y) F(–x)

Explanation

Solution

F(x) G(N)]–1 [F(x)]–1

[F(x)]–1 = $\begin{bmatrix} \cos x & \sin x & 0 \

  • \sin x & \cos x & 0 \ 0 & 0 & 1 \end{bmatrix}$= F(–x)

Similarly, [G(n)]–1 –G(–y) F(–x)