Question
Question: F(x) = \(\begin{bmatrix} \cos x & - \sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}\)an...
F(x) = cosxsinx0−sinxcosx0001and
G(x) = $\begin{bmatrix} \cos x & 0 & \sin x \ 0 & 1 & 0 \
- \sin x & 0 & \cos x \end{bmatrix}$, then [F(x) G(y)]–1 is equal to –
A
F(–x ) G (–y)
B
F(x –1) G(y –1)
C
G (–y) F(–x)
D
G(y –1) F (x–1)
Answer
G (–y) F(–x)
Explanation
Solution
F(x) G(N)]–1 [F(x)]–1
[F(x)]–1 = $\begin{bmatrix} \cos x & \sin x & 0 \
- \sin x & \cos x & 0 \ 0 & 0 & 1 \end{bmatrix}$= F(–x)
Similarly, [G(n)]–1 –G(–y) F(–x)