Solveeit Logo

Question

Question: f(x) be a differentiable function such that f '(x)= \(\frac { 1 } { \left( \log _ { 3 } \left( \lo...

f(x) be a differentiable function such that f '(x)=

1(log3(log1/4(cosx+a)))\frac { 1 } { \left( \log _ { 3 } \left( \log _ { 1 / 4 } ( \cos x + a ) \right) \right) } . If f(x) is increasing for all values of x then

A

a ∈ (5, ∞)

B

a ∈ (1, 5/4)

C

a ∈ (5/4, 5)

D

None of these

Answer

None of these

Explanation

Solution

For f(x) to be increasing ∀ x ∈ R, We must have log3 (log1/4 (cosx + a)) > 0 ∀ x ∈ R

⇒ 0 < cosx + a < 14\frac { 1 } { 4 } ∀ x ∈ R

⇒ −cosx < a < 14\frac { 1 } { 4 } − cosx ∀ x ∈ R

⇒ 1 < a < 34\frac { - 3 } { 4 } , which is not possible