Solveeit Logo

Question

Question: $f(x) = ax^{17} + b \sin x \cdot \sin 2x \cdot \sin 3x + cx^2 sgn(\sin x) + d \log{(x + \sqrt{1 + x^...

f(x)=ax17+bsinxsin2xsin3x+cx2sgn(sinx)+dlog(x+1+x2)+x(x+1x1)(exexex+ex)f(x) = ax^{17} + b \sin x \cdot \sin 2x \cdot \sin 3x + cx^2 sgn(\sin x) + d \log{(x + \sqrt{1 + x^2})} + x(|x + 1| - |x - 1|)\left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right)

be defined on the set of real numbers, (a>0,b,c,dR)(a > 0, b, c, d \in R) if f(7)=7,f(5)=5,f(2)=3f(-7) = 7, f(-5) = -5, f(-2) = 3, then the minimum number of zeroes of the equation f(x)=0f(x) = 0 is equal to ___.

Answer

5

Explanation

Solution

The given function is f(x)=ax17+bsinxsin2xsin3x+cx2sgn(sinx)+dlog(x+1+x2)+x(x+1x1)(exexex+ex)f(x) = ax^{17} + b \sin x \cdot \sin 2x \cdot \sin 3x + cx^2 sgn(\sin x) + d \log{(x + \sqrt{1 + x^2})} + x(|x + 1| - |x - 1|)\left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right).

Let's analyze the parity of each term:

  1. ax17ax^{17}: This is an odd function since (x)17=x17(-x)^{17} = -x^{17}.
  2. bsinxsin2xsin3xb \sin x \cdot \sin 2x \cdot \sin 3x: sin(x)=sinx\sin(-x) = -\sin x, sin(2x)=sin2x\sin(-2x) = -\sin 2x, sin(3x)=sin3x\sin(-3x) = -\sin 3x. So, bsin(x)sin(2x)sin(3x)=b(sinx)(sin2x)(sin3x)=bsinxsin2xsin3xb \sin(-x) \sin(-2x) \sin(-3x) = b (-\sin x) (-\sin 2x) (-\sin 3x) = -b \sin x \sin 2x \sin 3x. This is an odd function.
  3. cx2sgn(sinx)cx^2 sgn(\sin x): (x)2=x2(-x)^2 = x^2. sgn(sin(x))=sgn(sinx)sgn(\sin(-x)) = sgn(-\sin x). We know sgn(y)=sgn(y)sgn(-y) = -sgn(y). So, sgn(sin(x))=sgn(sinx)sgn(\sin(-x)) = -sgn(\sin x). Thus, c(x)2sgn(sin(x))=cx2(sgn(sinx))=cx2sgn(sinx)c(-x)^2 sgn(\sin(-x)) = cx^2 (-sgn(\sin x)) = -cx^2 sgn(\sin x). This is an odd function.
  4. dlog(x+1+x2)d \log{(x + \sqrt{1 + x^2})}: Let g(x)=log(x+1+x2)g(x) = \log{(x + \sqrt{1 + x^2})}. g(x)=log(x+1+(x)2)=log(x+1+x2)g(-x) = \log{(-x + \sqrt{1 + (-x)^2})} = \log{(-x + \sqrt{1 + x^2})}. We can write x+1+x2=(1+x2x)(1+x2+x)1+x2+x=1+x2x21+x2+x=1x+1+x2-x + \sqrt{1 + x^2} = \frac{(\sqrt{1+x^2}-x)(\sqrt{1+x^2}+x)}{\sqrt{1+x^2}+x} = \frac{1+x^2-x^2}{\sqrt{1+x^2}+x} = \frac{1}{x + \sqrt{1 + x^2}}. So, g(x)=log(1x+1+x2)=log(x+1+x2)=g(x)g(-x) = \log{\left(\frac{1}{x + \sqrt{1 + x^2}}\right)} = -\log{(x + \sqrt{1 + x^2})} = -g(x). This is an odd function.
  5. x(x+1x1)(exexex+ex)x(|x + 1| - |x - 1|)\left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right): Let h1(x)=x+1x1h_1(x) = |x + 1| - |x - 1|. h1(x)=x+1x1=x1x+1=(x+1x1)=h1(x)h_1(-x) = |-x + 1| - |-x - 1| = |x - 1| - |x + 1| = -(|x + 1| - |x - 1|) = -h_1(x). So h1(x)h_1(x) is an odd function. Let h2(x)=exexex+ex=tanhxh_2(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \tanh x. h2(x)=tanh(x)=tanhx=h2(x)h_2(-x) = \tanh(-x) = -\tanh x = -h_2(x). So h2(x)h_2(x) is an odd function. The term is xh1(x)h2(x)x \cdot h_1(x) \cdot h_2(x). This is (odd) \cdot (odd) \cdot (odd) = (even) \cdot (odd) = odd. So, the entire fifth term is an odd function.

Since all individual terms are odd functions, their sum f(x)f(x) is an odd function. This means f(x)=f(x)f(-x) = -f(x) for all xRx \in R. For an odd function, if f(0)f(0) is defined, then f(0)=f(0)    2f(0)=0    f(0)=0f(0) = -f(0) \implies 2f(0) = 0 \implies f(0) = 0. Let's check f(0)f(0): f(0)=a(0)17+bsin0sin0sin0+c(0)2sgn(sin0)+dlog(0+1+02)+0(0+101)(e0e0e0+e0)f(0) = a(0)^{17} + b \sin 0 \cdot \sin 0 \cdot \sin 0 + c(0)^2 sgn(\sin 0) + d \log{(0 + \sqrt{1 + 0^2})} + 0(|0 + 1| - |0 - 1|)\left(\frac{e^0 - e^{-0}}{e^0 + e^{-0}}\right) f(0)=0+0+0+dlog(1)+0=0f(0) = 0 + 0 + 0 + d \log(1) + 0 = 0. So, x=0x=0 is a zero of f(x)f(x).

We are given the following values: f(7)=7f(-7) = 7 f(5)=5f(-5) = -5 f(2)=3f(-2) = 3

Using the property f(x)=f(x)f(-x) = -f(x): f(7)=f(7)=7f(7) = -f(-7) = -7 f(5)=f(5)=(5)=5f(5) = -f(-5) = -(-5) = 5 f(2)=f(2)=3f(2) = -f(-2) = -3

Now we have the following points for f(x)f(x): f(7)=7f(-7) = 7 f(5)=5f(-5) = -5 f(2)=3f(-2) = 3 f(0)=0f(0) = 0 f(2)=3f(2) = -3 f(5)=5f(5) = 5 f(7)=7f(7) = -7

Next, we need to check the continuity of f(x)f(x). All terms are continuous except potentially cx2sgn(sinx)cx^2 sgn(\sin x). The function sgn(sinx)sgn(\sin x) is discontinuous at x=nπx = n\pi for nZn \in Z. However, the term is cx2sgn(sinx)cx^2 sgn(\sin x). At x=nπx=n\pi, f3(nπ)=c(nπ)2sgn(sin(nπ))=c(nπ)20=0f_3(n\pi) = c(n\pi)^2 sgn(\sin(n\pi)) = c(n\pi)^2 \cdot 0 = 0. Consider xnπx \to n\pi. If nn is an even integer (e.g., x2kπx \to 2k\pi), sinx\sin x changes from negative to positive. limx(2kπ)cx2sgn(sinx)=c(2kπ)2(1)=c(2kπ)2\lim_{x \to (2k\pi)^-} cx^2 sgn(\sin x) = c(2k\pi)^2 (-1) = -c(2k\pi)^2. limx(2kπ)+cx2sgn(sinx)=c(2kπ)2(1)=c(2kπ)2\lim_{x \to (2k\pi)^+} cx^2 sgn(\sin x) = c(2k\pi)^2 (1) = c(2k\pi)^2. For continuity, these limits must be equal to f3(2kπ)=0f_3(2k\pi) = 0. This implies c(2kπ)2=c(2kπ)2=0-c(2k\pi)^2 = c(2k\pi)^2 = 0, which means c=0c=0 (for k0k \ne 0). If nn is an odd integer (e.g., x(2k+1)πx \to (2k+1)\pi), sinx\sin x changes from positive to negative. limx((2k+1)π)cx2sgn(sinx)=c((2k+1)π)2(1)=c((2k+1)π)2\lim_{x \to ((2k+1)\pi)^-} cx^2 sgn(\sin x) = c((2k+1)\pi)^2 (1) = c((2k+1)\pi)^2. limx((2k+1)π)+cx2sgn(sinx)=c((2k+1)π)2(1)=c((2k+1)π)2\lim_{x \to ((2k+1)\pi)^+} cx^2 sgn(\sin x) = c((2k+1)\pi)^2 (-1) = -c((2k+1)\pi)^2. For continuity, these limits must be equal to f3((2k+1)π)=0f_3((2k+1)\pi) = 0. This implies c((2k+1)π)2=c((2k+1)π)2=0c((2k+1)\pi)^2 = -c((2k+1)\pi)^2 = 0, which means c=0c=0. So, f(x)f(x) is continuous only if c=0c=0. If c0c \ne 0, f(x)f(x) is discontinuous at x=nπx = n\pi for n0n \ne 0.

The values of xx for which f(x)f(x) is given are 7,5,2,0,2,5,7-7, -5, -2, 0, 2, 5, 7. None of these are multiples of π\pi except 00. The multiples of π\pi between 7-7 and 77 are 2π6.28-2\pi \approx -6.28, π3.14-\pi \approx -3.14, 00, π3.14\pi \approx 3.14, 2π6.282\pi \approx 6.28.

Let's evaluate f(nπ)f(n\pi) for n0n \ne 0: f(nπ)=a(nπ)17+b0+c0+dlog(nπ+1+(nπ)2)+nπ(nπ+1nπ1)tanh(nπ)f(n\pi) = a(n\pi)^{17} + b \cdot 0 + c \cdot 0 + d \log(n\pi + \sqrt{1+(n\pi)^2}) + n\pi(|n\pi+1|-|n\pi-1|)\tanh(n\pi). For n=1n=1, f(π)=aπ17+dlog(π+1+π2)+π((π+1)(π1))tanh(π)=aπ17+dlog(π+1+π2)+2πtanh(π)f(\pi) = a\pi^{17} + d \log(\pi + \sqrt{1+\pi^2}) + \pi((\pi+1)-(\pi-1))\tanh(\pi) = a\pi^{17} + d \log(\pi + \sqrt{1+\pi^2}) + 2\pi \tanh(\pi). Since a>0a>0, aπ17>0a\pi^{17} > 0. log(π+1+π2)>0\log(\pi + \sqrt{1+\pi^2}) > 0. tanh(π)>0\tanh(\pi) > 0. So, f(π)f(\pi) is likely positive (unless dd is sufficiently negative). Similarly, f(2π)=a(2π)17+dlog(2π+1+(2π)2)+2π((2π+1)(2π1))tanh(2π)=a(2π)17+dlog(2π+1+(2π)2)+4πtanh(2π)f(2\pi) = a(2\pi)^{17} + d \log(2\pi + \sqrt{1+(2\pi)^2}) + 2\pi((2\pi+1)-(2\pi-1))\tanh(2\pi) = a(2\pi)^{17} + d \log(2\pi + \sqrt{1+(2\pi)^2}) + 4\pi \tanh(2\pi). f(2π)f(2\pi) is also likely positive. Since f(x)f(x) is an odd function, f(π)=f(π)f(-\pi) = -f(\pi) and f(2π)=f(2π)f(-2\pi) = -f(2\pi). So f(π)f(-\pi) and f(2π)f(-2\pi) are likely negative.

Let's analyze the signs of f(x)f(x) values: f(7)=7(>0)f(-7) = 7 \quad (>0) f(2π)(<0)f(-2\pi) \quad (<0) (assuming f(2π)>0f(2\pi)>0) f(5)=5(<0)f(-5) = -5 \quad (<0) f(π)(<0)f(-\pi) \quad (<0) (assuming f(π)>0f(\pi)>0) f(2)=3(>0)f(-2) = 3 \quad (>0) f(0)=0(=0)f(0) = 0 \quad (=0) f(2)=3(<0)f(2) = -3 \quad (<0) f(π)(>0)f(\pi) \quad (>0) f(5)=5(>0)f(5) = 5 \quad (>0) f(2π)(>0)f(2\pi) \quad (>0) f(7)=7(<0)f(7) = -7 \quad (<0)

We use the Intermediate Value Theorem (IVT) on intervals where f(x)f(x) is continuous and changes sign. The minimum number of zeroes is guaranteed by IVT.

  1. In the interval (7,2π)(-7, -2\pi): f(7)=7>0f(-7) = 7 > 0 and f(2π)<0f(-2\pi) < 0. Since f(x)f(x) is continuous on (7,2π)(-7, -2\pi), there must be at least one zero in (7,2π)(-7, -2\pi).
  2. In the interval (π,2)(-\pi, -2): f(π)<0f(-\pi) < 0 and f(2)=3>0f(-2) = 3 > 0. Since f(x)f(x) is continuous on (π,2)(-\pi, -2), there must be at least one zero in (π,2)(-\pi, -2).
  3. At x=0x=0: f(0)=0f(0) = 0. This is a guaranteed zero.
  4. In the interval (2,π)(2, \pi): f(2)=3<0f(2) = -3 < 0 and f(π)>0f(\pi) > 0. Since f(x)f(x) is continuous on (2,π)(2, \pi), there must be at least one zero in (2,π)(2, \pi).
  5. In the interval (2π,7)(2\pi, 7): f(2π)>0f(2\pi) > 0 and f(7)=7<0f(7) = -7 < 0. Since f(x)f(x) is continuous on (2π,7)(2\pi, 7), there must be at least one zero in (2π,7)(2\pi, 7).

These 5 zeroes are distinct and guaranteed regardless of the value of cc (as long as cc is a real number, if c=0c=0 then function is continuous everywhere and these zeroes exist as well). The problem asks for the minimum number of zeroes, so we assume the most general case (that f(nπ)0f(n\pi) \ne 0 for n0n \ne 0). If f(nπ)f(n\pi) happens to be zero for some n0n \ne 0, it would only add more zeroes, not reduce the minimum count.

Thus, the minimum number of zeroes of the equation f(x)=0f(x)=0 is 5.

Explanation of the solution:

  1. Analyze the parity of each term in f(x)f(x). All terms are found to be odd functions. Therefore, f(x)f(x) is an odd function, meaning f(x)=f(x)f(-x) = -f(x).
  2. Use the given values f(7)=7,f(5)=5,f(2)=3f(-7)=7, f(-5)=-5, f(-2)=3 to find f(7)=7,f(5)=5,f(2)=3f(7)=-7, f(5)=5, f(2)=-3.
  3. For an odd function, if defined at x=0x=0, f(0)=0f(0)=0. Verify that f(0)=0f(0)=0. This gives one zero.
  4. Identify potential points of discontinuity for f(x)f(x). The term cx2sgn(sinx)cx^2 sgn(\sin x) makes f(x)f(x) discontinuous at x=nπx=n\pi for nZ,n0n \in Z, n \ne 0, unless c=0c=0.
  5. Evaluate the sign of f(x)f(x) at the given points and the discontinuity points (nπn\pi). Assuming f(nπ)0f(n\pi) \ne 0 for n0n \ne 0 (which represents the minimum case). f(7)>0f(-7)>0, f(2π)<0f(-2\pi)<0, f(5)<0f(-5)<0, f(π)<0f(-\pi)<0, f(2)>0f(-2)>0, f(0)=0f(0)=0, f(2)<0f(2)<0, f(π)>0f(\pi)>0, f(5)>0f(5)>0, f(2π)>0f(2\pi)>0, f(7)<0f(7)<0.
  6. Apply the Intermediate Value Theorem (IVT) to the continuous segments of f(x)f(x) where the sign changes.
    • One zero in (7,2π)(-7, -2\pi) because f(7)>0f(-7)>0 and f(2π)<0f(-2\pi)<0.
    • One zero in (π,2)(-\pi, -2) because f(π)<0f(-\pi)<0 and f(2)>0f(-2)>0.
    • One zero at x=0x=0 because f(0)=0f(0)=0.
    • One zero in (2,π)(2, \pi) because f(2)<0f(2)<0 and f(π)>0f(\pi)>0.
    • One zero in (2π,7)(2\pi, 7) because f(2π)>0f(2\pi)>0 and f(7)<0f(7)<0.
  7. These 5 zeroes are distinct and guaranteed, providing the minimum number of zeroes for f(x)=0f(x)=0.

Answer: 5