Solveeit Logo

Question

Question: f(x) = 2sin<sup>3</sup>x – 3sin<sup>2</sup>x + 12sinx + 5 ∀ x ∈ \(\left( 0 , \frac { \pi } { 2 } \ri...

f(x) = 2sin3x – 3sin2x + 12sinx + 5 ∀ x ∈ (0,π2)\left( 0 , \frac { \pi } { 2 } \right) then

A

'f ' is increasing in(0,π2)\left( 0 , \frac { \pi } { 2 } \right)

B

'f is decreasing in(0,π2)\left( 0 , \frac { \pi } { 2 } \right)

C

'f is increasing in(0,π4)\left( 0 , \frac { \pi } { 4 } \right)and decreasing (π4,π2)\left( \frac{\pi}{4},\frac{\pi}{2} \right)

D

'f ' is decreasing in (0,π4)\left( 0,\frac{\pi}{4} \right) and increasing in (π4,π2)\left( \frac { \pi } { 4 } , \frac { \pi } { 2 } \right)

Answer

'f ' is increasing in(0,π2)\left( 0 , \frac { \pi } { 2 } \right)

Explanation

Solution

f '(x) = 6 cosx (sin2x − sinx + 2) > 0 ∀

x ∈ (0, π/2) thus f(x) is increasing in (0, π/2).