Solveeit Logo

Question

Question: Let A = {1, 2, 3, 5, 8, 9}. Then the number of possible functions $f: A \rightarrow A$ such that $f(...

Let A = {1, 2, 3, 5, 8, 9}. Then the number of possible functions f:AAf: A \rightarrow A such that f(mn)=f(m)f(n)f(m \cdot n) = f(m) \cdot f(n) for every m,nAm, n \in A with mnAm \cdot n \in A is equal to .

Answer

433

Explanation

Solution

The given condition is f(mn)=f(m)f(n)f(m \cdot n) = f(m) \cdot f(n) for m,n,mnAm, n, m \cdot n \in A. The set is A={1,2,3,5,8,9}A = \{1, 2, 3, 5, 8, 9\}.

  1. Consider m=1m=1 or n=1n=1: For any xAx \in A, 1x=xA1 \cdot x = x \in A. So, f(x)=f(1)f(x)f(x) = f(1) \cdot f(x). This implies either f(x)=0f(x)=0 for all xAx \in A, or f(1)=1f(1)=1.

    • Case 1: f(1)=0f(1) = 0. If f(1)=0f(1)=0, then for any xAx \in A, f(x)=f(1)f(x)=0f(x)=0f(x) = f(1) \cdot f(x) = 0 \cdot f(x) = 0. So, f(x)=0f(x)=0 for all xAx \in A. This is one valid function.
    • Case 2: f(1)=1f(1) = 1. This condition f(x)=f(1)f(x)f(x) = f(1)f(x) becomes f(x)=f(x)f(x)=f(x), which gives no further restriction on f(x)f(x) for x1x \neq 1.
  2. Consider other products in A: We list all pairs (m,n)(m, n) such that m,nAm, n \in A and mnAm \cdot n \in A. The only non-trivial product is 33=93 \cdot 3 = 9. Both 33 and 99 are in AA. So, f(9)=f(3)f(3)=(f(3))2f(9) = f(3) \cdot f(3) = (f(3))^2.

  3. Analyze f(9)=(f(3))2f(9) = (f(3))^2: Since f:AAf: A \rightarrow A, f(3)f(3) must be an element of AA, and (f(3))2(f(3))^2 must also be an element of AA. Let y=f(3)y = f(3). Then y{1,2,3,5,8,9}y \in \{1, 2, 3, 5, 8, 9\}. We require y2{1,2,3,5,8,9}y^2 \in \{1, 2, 3, 5, 8, 9\}.

    • 12=1A1^2 = 1 \in A. So f(3)=1f(3)=1 is possible, which implies f(9)=1f(9)=1.
    • 32=9A3^2 = 9 \in A. So f(3)=3f(3)=3 is possible, which implies f(9)=9f(9)=9. Other squares (22=4,52=25,82=64,92=812^2=4, 5^2=25, 8^2=64, 9^2=81) are not in AA. Thus, if f(1)=1f(1)=1, f(3)f(3) can only be 11 or 33.
  4. Count the functions for f(1)=1f(1)=1:

    • Subcase 2a: f(1)=1f(1)=1 and f(3)=1f(3)=1. This implies f(9)=(f(3))2=12=1f(9) = (f(3))^2 = 1^2 = 1. The values f(1)=1f(1)=1, f(3)=1f(3)=1, f(9)=1f(9)=1 are fixed. For the remaining elements x{2,5,8}x \in \{2, 5, 8\}, f(x)f(x) can be any element of AA. There are 6 choices for f(2)f(2), 6 for f(5)f(5), and 6 for f(8)f(8). Number of functions = 1×1×6×6×6=2161 \times 1 \times 6 \times 6 \times 6 = 216.
    • Subcase 2b: f(1)=1f(1)=1 and f(3)=3f(3)=3. This implies f(9)=(f(3))2=32=9f(9) = (f(3))^2 = 3^2 = 9. The values f(1)=1f(1)=1, f(3)=3f(3)=3, f(9)=9f(9)=9 are fixed. Similarly, f(2),f(5),f(8)f(2), f(5), f(8) can be any element of AA. Number of functions = 1×1×6×6×6=2161 \times 1 \times 6 \times 6 \times 6 = 216.
  5. Total Number of Functions: Total = (Functions with f(1)=0f(1)=0) + (Functions with f(1)=1,f(3)=1f(1)=1, f(3)=1) + (Functions with f(1)=1,f(3)=3f(1)=1, f(3)=3) = 1 + 216 + 216 = 433.