Solveeit Logo

Question

Question: Function \(\left\{ \begin{matrix} 2x\tan x–\frac{\pi}{\cos x}; & x \neq \frac{\pi}{2} \\ k & þ \end{...

Function {2xtanxπcosx;xπ2kþ=π2 \left\{ \begin{matrix} 2x\tan x–\frac{\pi}{\cos x}; & x \neq \frac{\pi}{2} \\ k & þ \end{matrix} = \frac{\pi}{2} \right.\ is continuous at x = π2\frac{\pi}{2}if k =

A

– 2

B

2

C

12\frac{1}{2}

D

No such values of k exists

Answer

– 2

Explanation

Solution

Ltxπ/2(2xtanxπcosx)\underset{x \rightarrow \pi/2}{Lt}\left( 2x\tan x–\frac{\pi}{\cos x} \right)=Ltxπ/22xsinxπcosx\underset{x \rightarrow \pi/2}{Lt}\frac{2x\sin x–\pi}{\cos x}

= –2 (using L’Hospital rule)