Solveeit Logo

Question

Question: Function f(x) = \(\frac{|x–1|}{x^{2}}\) is monotonic decreasing in –...

Function f(x) = x1x2\frac{|x–1|}{x^{2}} is monotonic decreasing in –

A

(– , )

B

(0, 1)

C

(2, )

D

(– , 1) Č (2, )

Answer

(– , 1) Č (2, )

Explanation

Solution

f(x) = {1xx2,x<1x1x2,x>1 \left\{ \begin{matrix} \frac{1–x}{x^{2}},x < 1 \\ \frac{x–1}{x^{2}},x > 1 \end{matrix} \right.\

f ¢(x) = {1x22x3,x<12x31x2,x>1 \left\{ \begin{matrix} \frac{1}{x^{2}}–\frac{2}{x^{3}},x < 1 \\ \frac{2}{x^{3}}–\frac{1}{x^{2}},x > 1 \end{matrix} \right.\

f(x) is decreasing Ž f ¢(x) < 0

Ž {x2x3<0,x<12xx3<0,x>1 \left\{ \begin{matrix} \frac{x–2}{x^{3}} < 0,x < 1 \\ \frac{2–x}{x^{3}} < 0,x > 1 \end{matrix} \right.\ Ž x < 1, x > 2