Solveeit Logo

Question

Question: Function \(f(x) = \frac{\lambda\sin x + 6\cos x}{2\sin x + 3\cos x}\) is monotonic increasing if...

Function f(x)=λsinx+6cosx2sinx+3cosxf(x) = \frac{\lambda\sin x + 6\cos x}{2\sin x + 3\cos x} is monotonic increasing if

A

λ>1\lambda > 1

B

λ<1\lambda < 1

C

λ<4\lambda < 4

D

λ>4\lambda > 4

Answer

λ>4\lambda > 4

Explanation

Solution

The function is monotonic increasing if, f(x)>0f^{'}(x) > 0

(2sinx+3cosx)(λcosx6sinx)(2sinx+3cosx)2\frac{(2\sin x + 3\cos x)(\lambda\cos x - 6\sin x)}{(2\sin x + 3\cos x)^{2}}(λsinx+6cosx)(2cosx3sinx)(2sinx+3cosx)2>0\frac{(\lambda\sin x + 6\cos x)(2\cos x - 3\sin x)}{(2\sin x + 3\cos x)^{2}} > 0

3λ(sin2x+cos2x)12(sin2x+cos2x)>03\lambda(\sin^{2}x + \cos^{2}x) - 12(\sin^{2}x + \cos^{2}x) > 03λ12>03\lambda - 12 > 0

λ>4\lambda > 4.