Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

From the top of a lighthouse, the angles of depression of two stations on the oposite sides of it at a distance d apart are α\alpha and β\beta. The height of the lighthouse is

A

dtanαtanα+tanβ\frac{d \, \tan \, \alpha}{\tan \, \alpha + \tan \, \beta}

B

dcotα+cotβ\frac{d}{\cot \, \alpha + \cot \, \beta}

C

dtanβtanα+tanβ\frac{d \, \tan \, \beta}{\tan \, \alpha + \tan \, \beta}

D

dcotβcotα+cotβ\frac{d \, \cot \, \beta}{\cot \, \alpha + \cot \, \beta}

Answer

dcotα+cotβ\frac{d}{\cot \, \alpha + \cot \, \beta}

Explanation

Solution

Let PMPM be lighthouse.

Given,
PQM=α,PRM=β\angle P Q M=\alpha, \angle P R M=\beta and QR=dQ R=d
In ΔPQM\Delta PQM,
tanα=PMQMtan\,\alpha=\frac{PM}{QM}
QM=PMcotα\Rightarrow QM=PM\,cot\,\alpha
In ΔPRM\Delta PRM,
tanβ=PMRM\tan\,\beta=\frac{PM}{RM}
RM=PMcot??\Rightarrow RM = PM\,\cot\,?? \therefore QR=QM+MR \Rightarrow d=PM,cot,\alpha+PM, \cot,\beta \Rightarrow d=PM\left(\cot,\alpha + \cot,\beta\right) \Rightarrow d=PM\left(\cot,\alpha + \cot,\beta\right) \Rightarrow PM=\frac{d}{\cot,\alpha + \cot,\beta} \thereforeHeightoflighthouseisHeight of light house is\frac{d}{\cot,\alpha + \cot,\beta}$.