Question
Mathematics Question on Trigonometric Identities
From the top of a lighthouse, the angles of depression of two stations on the oposite sides of it at a distance d apart are α and β. The height of the lighthouse is
A
tanα+tanβdtanα
B
cotα+cotβd
C
tanα+tanβdtanβ
D
cotα+cotβdcotβ
Answer
cotα+cotβd
Explanation
Solution
Let PM be lighthouse.
Given,
∠PQM=α,∠PRM=β and QR=d
In ΔPQM,
tanα=QMPM
⇒QM=PMcotα
In ΔPRM,
tanβ=RMPM
⇒RM=PMcot??\therefore QR=QM+MR\Rightarrow d=PM,cot,\alpha+PM, \cot,\beta\Rightarrow d=PM\left(\cot,\alpha + \cot,\beta\right)\Rightarrow d=PM\left(\cot,\alpha + \cot,\beta\right)\Rightarrow PM=\frac{d}{\cot,\alpha + \cot,\beta}\thereforeHeightoflighthouseis\frac{d}{\cot,\alpha + \cot,\beta}$.