Solveeit Logo

Question

Chemistry Question on Chemical Kinetics

From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants.

  1. 3NO(g) \to N2O (g) Rate = k[NO]2
  2. H2O2 (aq) + 3I−(aq) + 2H+ \to 2H2O(l) + I3- Rate = k[H2O2][I−]
  3. CH3CHO(g) \to CH4(g) + CO(g) Rate = k [CH3CHO]32\frac 32
  4. C2H5Cl(g) \to C2H4(g) + HCl(g) Rate = k [C2H5Cl]
Answer

(i) Given rate = k [NO]2
Therefore, order of the reaction = 2
Dimension of K=Rate[NO]2K =\frac {Rate }{ [NO]^2}
=molL1s1(molL1)2= \frac {mol L^{-1} s^{-1}}{(mol L^{-1})^2}
=molL1s1mol2L2= \frac {mol L^{-1} s^{-1}}{mol^2 L^{-2}}
=L mol1s1= L \ mol^{-1} s^{-1}


(ii) Given rate = k [H2O2] [I−]
Therefore, order of the reaction = 2
Dimension of K=Rate[H2O2][I]K = \frac {Rate}{[H_2O_2][I^-]}
= molL1s1(molL1)(molL1)\frac {mol L^{-1} s^{-1}}{(mol L^{-1})(mol L^{-1})}
= L mol1s1L\ mol^{-1} s^{-1}


(iii) Given rate = k[CH3CHO]32k [CH_3CHO]^{\frac 32}
Therefore, order of reaction =32\frac 32
Dimension of K=Rate[CH3CHO]32K = \frac {Rate}{ [CH_3CHO]^{\frac 32}}
= molL1s1(molL1)32\frac {mol L^{-1} s^{-1}}{(mol L^{-1})^{\frac 32}}
= molL1s1mol32L32\frac {mol L^{-1} s^{-1}}{mol^{\frac 32} L^{-\frac 32}}
= L12mol12s1L^{\frac 12} mol^{-\frac 12} s^{-1}


(iv) Given rate = k[C2H5Cl]k [C_2H_5Cl]
Therefore,order of the reaction = 1
Dimension of k=Rate[C2H5Cl]k = \frac {Rate}{ [C_2H_5Cl]}
= molL1s1(molL1)\frac {mol L^{-1} s^{-1}}{(mol L^{-1})}
= s1s^{-1}