Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

From the figure find the capacitance of the capacitor?

A

C=ε0Ad(K1+K22)C=\frac{\varepsilon_{0}A}{d}\left(\frac{K_{1}+K_{2}}{2} \right)

B

C=ε0A2d(K1K2K1+K2)C=\frac{\varepsilon_{0}A}{2d}\left(\frac{K_{1}K_{2}}{K_{1}+K_{2}}\right)

C

C=ε0Ad(K1K2)C=\frac{\varepsilon_{0}A}{d}\left(\frac{K_{1}}{K_{2}} \right)

D

C=ε0Ad(2K1K2K1+K2)C=\frac{\varepsilon_{0}A}{d}\left(\frac{2K_{1}K_{2}}{K_{1}+K_{2}} \right)

Answer

C=ε0A2d(K1K2K1+K2)C=\frac{\varepsilon_{0}A}{2d}\left(\frac{K_{1}K_{2}}{K_{1}+K_{2}}\right)

Explanation

Solution

The given capacitor can be viewed as a series combination of two capacitors C1C_{1} and C2C_{2} where C1=ε0K1A/2d;C2=ε0K2A/2dC_{1} = \frac{\varepsilon_{0}K_{1}A/2}{d}; C_{2} = \frac{\varepsilon_{0}K_{2}A/2}{d} where d is the separation between the plates, \therefore The effective capacitance C=C1C2C1+C2C = \frac{C_{1}C_{2}}{C_{1}+C_{2}} =ε0K1A/2d×ε0K2A/2dε0K1A/2d+ε0K2A/2d=(ε0A2d)2K1K2(ε0A2d)(K1+K2)= \frac{\frac{\varepsilon_{0}K_{1}A/2}{d}\times \frac{\varepsilon_{0}K_{2}A/2}{d}}{\frac{\varepsilon_{0}K_{1}A/2 }{d}+\frac{\varepsilon_{0}K_{2}A/2}{d}} = \frac{\left(\frac{\varepsilon_{0}A}{2d}\right)^{2}K_{1}K_{2}}{\left(\frac{\varepsilon_{0}A}{2d}\right)\left(K_{1}+K_{2}\right)} =ε0A2d(K1K2K1+K2)= \frac{\varepsilon_{0}A}{2d}\left(\frac{K_{1}K_{2}}{K_{1}+K_{2}}\right)