Solveeit Logo

Question

Mathematics Question on Variance and Standard Deviation

From the data given below state which group is more variable, A or B?

X35545253565852505149
Y108107105105106107104103104101
Answer

The prices of the shares X are

35, 54, 52, 53, 56, 58, 52, 50, 51, 49

Here, the number of observations, N = 10

Mean,xˉ=1Ni=110xi=110×510=51Mean,\bar{x}=\frac{1}{N}\sum_{i=1}^{10}x_i=\frac{1}{10}×510=51

The following table is obtained corresponding to shares X

xix_ixi,xˉx_i,-\bar{x}(xi,xˉ)2(x_i,-\bar{x})^2
35-16256
3539
5311
5624
58525
52749
5011
51-11
4900
-24
--350

Variance(σ2) = 1Ni=110(xixˉ)2=110×350=35\frac{1}{N}\sum_{i=1}^{10}(xi-\bar{x})^2=\frac{1}{10}×350=35

Standarddeviation.(σ1)=35=5.91∴\,Standard\,deviation\\.(σ_1) =√35=5.91

C.V (Shares X)= σ1X×100=5.9151×100=11.58\frac{σ_1}{X}×100=\frac{5.91}{51}×100=11.58

The prices of share Y are

108, 107, 105, 105, 106, 107, 104, 103, 104, 101

∴ Mean, yˉ=1Ni=110yi=110×1050=105\bar{y}=\frac{1}{N}\sum_{i=1}^{10}yi=\frac{1}{10}×1050=105

The following table is obtained corresponding to shares Y

yiy_iyi,yˉy_i,-\bar{y}(yi,yˉ)(y_i,-\bar{y})
10839
10724
10500
10500
10611
10724
10411
10324
10411
101416
--40

Variance(σ2) = 1Ni=110(yiyˉ)2=110×40=4\frac{1}{N}\sum_{i=1}^{10}(y_i-\bar{y})^2=\frac{1}{10}×40=4

Standarddeviation.(σ2)=4=2Standard\,deviation\\.(σ_2) =√4=2

∴ C.V (Shares )= σ2X×100=2105×100=1.9=11.58\frac{σ_2}{X}×100=\frac{2}{105}×100=1.9=11.58

∴ C.V. of prices of shares X is greater than the C.V. of prices of shares Y

Thus, the prices of shares Y are more stable than the prices of shares X.