Question
Mathematics Question on Variance and Standard Deviation
From the data given below state which group is more variable, A or B?
Marks | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
---|---|---|---|---|---|---|---|
Group A | 9 | 17 | 32 | 33 | 40 | 10 | 9 |
Group B 1 | 10 | 20 | 30 | 25 | 43 | 15 | 7 |
Answer
Marks | Group A fi | mid−pointxi | yi=10xi−45 | fi2 | fiyi | fiy12 |
---|---|---|---|---|---|---|
10-20 | 9 | 15 | 3 | 9 | -27 | 81 |
20-30 | 17 | 25 | 2 | 4 | -34 | 68 |
30-40 | 32 | 35 | 1 | 1 | -32 | 32 |
40-50 | 33 | 45 | 0 | 0 | 0 | 0 |
50-60 | 40 | 55 | 1 | 1 | 40 | 40 |
60-70 | 10 | 65 | 2 | 4 | 20 | 40 |
70-80 | 9 | 75 | 3 | 9 | 27 | 81 |
150 | 6 | 342 |
Here, h = 10, N = 150, A = 45
Mean, =An∑i=17fixi×h=45+150−6×10=45−0.4−44.6
Variance (σ2) = N2h2(N∑i=17fiyi2−(∑i=17fiyi)2)
=22500100(150×342−(6)2)
2251(51264)
=227.84
∴Standarddeviation.(σ)=√2227.84=15.09
The standard deviation of group B is calculated as follows.
Marks | Group B fi | mid−pointxi | yi=10xi−45 | fi2 | fiyi | fiy12 |
---|---|---|---|---|---|---|
10-20 | 10 | 15 | -3 | 9 | -30 | 90 |
20-30 | 20 | 25 | -2 | 4 | -40 | 80 |
30-40 | 30 | 35 | -1 | 1 | -30 | 30 |
40-50 | 25 | 45 | 0 | 0 | 0 | 0 |
50-60 | 43 | 55 | 1 | 1 | 43 | 43 |
60-70 | 15 | 65 | 2 | 4 | 30 | 60 |
70-80 | 7 | 75 | 3 | 9 | 21 | 63 |
150 | 6 | 366 |
Mean==An∑i=17fixi×h=45+150−6×10=45−0.4−44.6
Variance (σ2)= N2h2[N∑i=17fiyi2−(∑i=17fiyi)2]
=22500100(150×366−(6)2)
=2251[54864]=243.84
∴Standarddeviation.(σ2)=√243.84=15.61
Since the mean of both the groups is same, the group with greater standard deviation will be more variable.
Thus, group B has more variability in the marks.