Solveeit Logo

Question

Mathematics Question on Variance and Standard Deviation

From the data given below state which group is more variable, A or B?

Marks10-2020-3030-4040-5050-6060-7070-80
Group A917323340109
Group B 11020302543157
Answer
MarksGroup A fif_imidpointximid-point\,x_iyi=xi4510y_i=\frac{x_i-45}{10}fi2f_i^2fiyif_iy_ifiy12f_iy_1^2
10-2091539-2781
20-30172524-3468
30-40323511-3232
40-5033450000
50-604055114040
60-701065242040
70-80975392781
1506342

Here, h = 10, N = 150, A = 45

Mean, =Ai=17fixin×h=45+6×10150=450.444.6=A\frac{\sum_{i=1}^7f_ix_i}{n}×h=45+\frac{-6×10}{150}=45-0.4-44.6

Variance (σ2) = h2N2(Ni=17fiyi2(i=17fiyi)2)\frac{h^2}{N^2}(N\sum_{i=1}^7f_iy_i^2-(\sum_{i=1}^7f_iy_i)^2)

=10022500(150×342(6)2)=\frac{100}{22500}(150×342-(6)^2)

1225(51264)\frac{1}{225}(51264)

=227.84=227.84

Standarddeviation.(σ)=2227.84=15.09∴\,Standard\,deviation\\.(σ) =√2227.84=15.09

The standard deviation of group B is calculated as follows.

MarksGroup B fif_imidpointximid-point\,x_iyi=xi4510y_i=\frac{x_i-45}{10}fi2f_i^2fiyif_iy_ifiy12f_iy_1^2
10-201015-39-3090
20-302025-24-4080
30-403035-11-3030
40-5025450000
50-604355114343
60-701565243060
70-80775392163
1506366

Mean==Ai=17fixin×h=45+6×10150=450.444.6=A\frac{\sum_{i=1}^7f_ix_i}{n}×h=45+\frac{-6×10}{150}=45-0.4-44.6

Variance (σ2)= h2N2[Ni=17fiyi2(i=17fiyi)2]\frac{h^2}{N^2}[N\sum_{i=1}^7f_iy_i^2-(\sum_{i=1}^7f_iy_i)^2]

=10022500(150×366(6)2)=\frac{100}{22500}(150×366-(6)^2)

=1225[54864]=243.84=\frac{1}{225}[54864]=243.84

Standarddeviation.(σ2)=243.84=15.61∴\,Standard\,deviation\\.(σ_2) =√243.84=15.61

Since the mean of both the groups is same, the group with greater standard deviation will be more variable.

Thus, group B has more variability in the marks.