Question
Question: From mean value theorem f(2) – f(1) = (b – a).f '(x<sub>1</sub>), a < x<sub>1</sub> < b & f(x) = \(...
From mean value theorem f(2) – f(1) = (b – a).f '(x1),
a < x1 < b & f(x) = x1 then x1 equal to
A
a+b2ab
B
b+ab−a
C
ab
D
2a+b
Answer
ab
Explanation
Solution
f '(x) = b−af(b)−f(a)
– x121=b−ab1−a1 ̃ x121 = ab(b−a)a−b
– x121=−ab1 ̃ x12 = ab ̃ x1 = ab