Solveeit Logo

Question

Question: From \[\left( {1,4} \right)\] you travel \[5\sqrt 2 \] units by making \[{135^0}\] angles with posit...

From (1,4)\left( {1,4} \right) you travel 525\sqrt 2 units by making 1350{135^0} angles with positive x-axis (anti-clock wise direction) and then 4 units by making 1200{120^0} angle with positive x-axis (clockwise) to reach Q. Find the co-ordinates of point Q.
A. (+6,923)\left( { + 6,9 - 2\sqrt 3 } \right)
B. (6,923)\left( { - 6,9 - 2\sqrt 3 } \right)
C. (6,9+23)\left( { - 6,9 + 2\sqrt 3 } \right)
D. (+6,9+23)\left( { + 6,9 + 2\sqrt 3 } \right)

Explanation

Solution

Hint : In this question, consider the unknown points as variables and rotate the point by an angle of 1350{135^0} by travelling 525\sqrt 2 units. Then rotate the obtained point by angle of 1200{120^0} by travelling 4 units by using the concept of translation and rotation of axes. So, use this concept to reach the solution of the given problem.

Complete step by step solution :
Let the initial position be P(x0,y0)=P(1,4)P\left( {{x_0},{y_0}} \right) = P\left( {1,4} \right)
Let the unknown points be R(x1,y1)R\left( {{x_1},{y_1}} \right) and Q(x2,y2)Q\left( {{x_2},{y_2}} \right).
Point R(x1,y1)R\left( {{x_1},{y_1}} \right) can be obtained by travelling 525\sqrt 2 units by making 1350{135^0} angles with positive x-axis (anti-clock wise direction) from point P(x0,y0)=P(1,4)P\left( {{x_0},{y_0}} \right) = P\left( {1,4} \right).
We know that if a point (xa,ya)\left( {{x_a},{y_a}} \right) has travelled rr units by making an angle of θ\theta with the positive x-axis (anti-clock wise direction) then that point will be (xa+rcosθ,ya+rsinθ)\left( {{x_a} + r\cos \theta ,{y_a} + r\sin \theta } \right).
So, we have

x1=x0+rcos(1350) x1=1+52(12) x1=15=4  \Rightarrow {x_1} = {x_0} + r\cos \left( {{{135}^0}} \right) \\\ \Rightarrow {x_1} = 1 + 5\sqrt 2 \left( { - \dfrac{1}{{\sqrt 2 }}} \right) \\\ \therefore {x_1} = 1 - 5 = - 4 \\\

And

y1=y0+rsin(1350) y1=4+52(12) y1=4+5=9  \Rightarrow {y_1} = {y_0} + r\sin \left( {{{135}^0}} \right) \\\ \Rightarrow {y_1} = 4 + 5\sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}} \right) \\\ \therefore {y_1} = 4 + 5 = 9 \\\

Hence, R(x1,y1)=(4,9)R\left( {{x_1},{y_1}} \right) = \left( { - 4,9} \right)
Point Q(x2,y2)Q\left( {{x_2},{y_2}} \right) can be obtained by travelling 4 units by making an angle of with positive x-axis (clock wise direction) then from point R(x1,y1)=(4,9)R\left( {{x_1},{y_1}} \right) = \left( { - 4,9} \right).
We know that if a point (xa,ya)\left( {{x_a},{y_a}} \right) has travelled rr units by making an angle of θ\theta with the positive x-axis (clock wise direction) then that point will be(xa+rcos(θ),ya+rsin(θ))\left( {{x_a} + r\cos \left( { - \theta } \right),{y_a} + r\sin \left( { - \theta } \right)} \right).
So, we have

x2=x1+rcos(θ) x2=4+4cos(1200) x2=4+4(12) x2=42=6  \Rightarrow {x_2} = {x_1} + r\cos \left( { - \theta } \right) \\\ \Rightarrow {x_2} = - 4 + 4\cos \left( { - {{120}^0}} \right) \\\ \Rightarrow {x_2} = - 4 + 4\left( { - \dfrac{1}{2}} \right) \\\ \therefore {x_2} = - 4 - 2 = - 6 \\\

And

y2=y1+rsin(θ) y2=9+4sin(1200) y2=94(32) y2=923  \Rightarrow {y_2} = {y_1} + r\sin \left( { - \theta } \right) \\\ \Rightarrow {y_2} = 9 + 4\sin \left( { - {{120}^0}} \right) \\\ \Rightarrow {y_2} = 9 - 4\left( {\dfrac{{\sqrt 3 }}{2}} \right) \\\ \therefore {y_2} = 9 - 2\sqrt 3 \\\

Hence, Q(x2,y2)=(6,923)Q\left( {{x_2},{y_2}} \right) = \left( { - 6,9 - 2\sqrt 3 } \right)
Thus, the correct option is B. (6,923)\left( { - 6,9 - 2\sqrt 3 } \right)

Note : If a point (xa,ya)\left( {{x_a},{y_a}} \right) has travelled rr units by making an angle of θ\theta with the positive x-axis (anti-clock wise direction) then that point will be (xa+rcosθ,ya+rsinθ)\left( {{x_a} + r\cos \theta ,{y_a} + r\sin \theta } \right).If a point (xa,ya)\left( {{x_a},{y_a}} \right) has travelled rr units by making an angle of θ\theta with the positive x-axis (clockwise direction) then that point will be(xa+rcos(θ),ya+rsin(θ))\left( {{x_a} + r\cos \left( { - \theta } \right),{y_a} + r\sin \left( { - \theta } \right)} \right).