Solveeit Logo

Question

Question: From any point on the hyperbola, \(\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1\) tangents are draw...

From any point on the hyperbola, x2a2y2b2=1\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1 tangents are drawn to the hyperbola x2a2y2b2=2\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 2. The area cut-off by the chord of contact on the asymptotes is equal to

A

ab2\frac{ab}{2}

B

abab

C

2ab2ab

D

4ab4ab

Answer

4ab4ab

Explanation

Solution

Let P(x1,y1)P(x_{1},y_{1}) be a point on the hyperbola x2a2y2b2=1\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1, then x12a2y12b2=1\frac{x_{1}^{2}}{a^{2}} - \frac{y_{1}^{2}}{b^{2}} = 1

The chord of contact of tangent from P to the hyperbola x2a2y2b2=2\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 2 is xx1a2yy1b2=2\frac{xx_{1}}{a^{2}} - \frac{yy_{1}}{b^{2}} = 2 .....(i)

The equation of asymptotes are xayb\frac{x}{a} - \frac{y}{b} = 0 ......(ii)

And xa+yb\frac{x}{a} + \frac{y}{b} = 0 ....(iii)

The point of intersection of the asymptotes and chord are (2ax1/ay1/b,2bx1/ay1/b);(2ax1/a+y1/b,2bx1/a+y1/b)\left( \frac{2a}{x_{1}/a - y_{1}/b},\frac{2b}{x_{1}/a - y_{1}/b} \right);\left( \frac{2a}{x_{1}/a + y_{1}/b},\frac{- 2b}{x_{1}/a + y_{1}/b} \right), (0, 0)

\therefore Area of triangle = 12(x1y2x2y1)\frac{1}{2}|(x_{1}y_{2} - x_{2}y_{1})| =

12(8abx12/a2y12/b2)=4ab\frac{1}{2}\left| \left( \frac{- 8ab}{x_{1}^{2}/a^{2} - y_{1}^{2}/b^{2}} \right) \right| = 4ab