Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

From a solid sphere of mass MM and radius RR, a cube of maximum possible volume is cut. Moment of inertia of cube about an axis passing through its centre and perpendicular to one of its faces is

A

MR2322π\frac{MR^2}{ 32 \sqrt 2 \pi }

B

4MR293π\frac{ 4MR^2}{ 9 \sqrt 3 \pi }

C

MR2162π\frac{MR^2}{ 16 \sqrt 2 \pi }

D

4MR233π\frac{ 4MR^2}{ 3 \sqrt 3 \pi }

Answer

4MR293π\frac{ 4MR^2}{ 9 \sqrt 3 \pi }

Explanation

Solution


I=Mx26I =\frac{ Mx ^{2}}{6}
edge length : (x)
2R=3x2 R=\sqrt{3} x
x=2R3x =\frac{2 R }{\sqrt{3}}
Now,
mass of cube :
m=M(43πR3)(2R3)3m=\frac{M}{\left(\frac{4}{3} \pi R^{3}\right)}\left(\frac{2 R}{\sqrt{3}}\right)^{3}
(3M4πR3)(8R333)\left(\frac{3 M}{4 \pi R^{3}}\right)\left(\frac{8 R^{3}}{3 \sqrt{3}}\right)
m=2M3πm =\frac{2 M }{\sqrt{3} \pi}
I=13(2M3π)[4R23]I =\frac{1}{3}\left(\frac{2 M }{\sqrt{3} \pi}\right)\left[\frac{4 R ^{2}}{3}\right]
=4MR293π=\frac{4 MR ^{2}}{9 \sqrt{3} \pi}