Solveeit Logo

Question

Question: From a point P outside of a circle with centre at C tangents PX and PY are drawn such that \(\frac {...

From a point P outside of a circle with centre at C tangents PX and PY are drawn such that 1(CX)2\frac { 1 } { ( \mathrm { CX } ) ^ { 2 } }+1(PX)2\frac { 1 } { ( \mathrm { PX } ) ^ { 2 } }=116\frac { 1 } { 16 }then the length of chord XY is –

A

8

B

12

C

16

D

None of these

Answer

8

Explanation

Solution

Let PX = t, XC = r, PC = c and XM = k

Now in DPXC and DXMC

tc\frac { \mathrm { t } } { \mathrm { c } } = kr\frac { \mathrm { k } } { \mathrm { r } }Ž tr = ck

Now given 1r2\frac { 1 } { \mathrm { r } ^ { 2 } } + 1t2\frac { 1 } { \mathfrak { t } ^ { 2 } } = 116\frac { 1 } { 16 }and using k =

Ž k2 = = 11t2+1r2\frac { 1 } { \frac { 1 } { \mathrm { t } ^ { 2 } } + \frac { 1 } { \mathrm { r } ^ { 2 } } } = 16

Ž k = 4

So xy = 2k = 8