Solveeit Logo

Question

Question: From a point on the circle \(x ^ { 2 } + y ^ { 2 } = a ^ { 2 } \sin ^ { 2 } \alpha\) The angle betwe...

From a point on the circle x2+y2=a2sin2αx ^ { 2 } + y ^ { 2 } = a ^ { 2 } \sin ^ { 2 } \alpha The angle between them is

A

α

B

α2\frac { \alpha } { 2 }

C

2α2 \alpha

D

None of these

Answer

2α2 \alpha

Explanation

Solution

Let any point on the circle (acost,asint)( a \cos t , a \sin t ) and OPQ=θ\angle O P Q = \theta

Now; PQ = length of tangent from P on the circle x2+y2=a2sin2αx ^ { 2 } + y ^ { 2 } = a ^ { 2 } \sin ^ { 2 } \alpha

PQ=a2cos2t+a2sin2ta2sin2αP Q = \sqrt { a ^ { 2 } \cos ^ { 2 } t + a ^ { 2 } \sin ^ { 2 } t - a ^ { 2 } \sin ^ { 2 } \alpha } =acosα= a \cos \alpha

x2+y2=a2sin2αx ^ { 2 } + y ^ { 2 } = a ^ { 2 } \sin ^ { 2 } \alpha tanθ=OQPQ=tanα\tan \theta = \frac { O Q } { P Q } = \tan \alpha

θ=α\Rightarrow \theta = \alpha;

\therefore Angle between tangents

Alternative Method : We know that, angle between the tangent from (α,β)( \alpha , \beta ) to the circle x2+y2=a2x ^ { 2 } + y ^ { 2 } = a ^ { 2 } is 2tan1(aα2+β2a2)2 \tan ^ { - 1 } \left( \frac { a } { \sqrt { \alpha ^ { 2 } + \beta ^ { 2 } - a ^ { 2 } } } \right).

Let point on the circle x2+y2=a2x ^ { 2 } + y ^ { 2 } = a ^ { 2 } be (acost,asint)( a \cos t , a \sin t )

Angle between tangent

= 2tan1(asinαa2cos2t+a2sin2ta2sin2α)2 \tan ^ { - 1 } \left( \frac { a \sin \alpha } { \sqrt { a ^ { 2 } \cos ^ { 2 } t + a ^ { 2 } \sin ^ { 2 } t - a ^ { 2 } \sin ^ { 2 } \alpha } } \right)

=2α= 2 \alpha