Solveeit Logo

Question

Question: From a pack of 52 playing cards; half of the cards are randomly removed without looking at them. Fro...

From a pack of 52 playing cards; half of the cards are randomly removed without looking at them. From the remaining cards, 3 cards are drawn randomly. The probability that all are king.

A

1(25)(17)(13)\frac{1}{(25)(17)(13)}

B

1(25)(15)(13)\frac{1}{(25)(15)(13)}

C

1(52)(17)(13)\frac{1}{(52)(17)(13)}

D

1(25)(51)(13)\frac{1}{(25)(51)(13)}

Answer

1(25)(17)(13)\frac{1}{(25)(17)(13)}

Explanation

Solution

Let N=52N=52 be the total number of cards in a standard deck. The number of kings is K=4K=4.
Half of the cards are randomly removed, so 2626 cards are removed, and 2626 cards remain.
Let n=26n=26 be the number of remaining cards.
From these n=26n=26 cards, 3 cards are drawn randomly. We want to find the probability that all 3 drawn cards are kings.

Let XX be the number of kings among the 26 cards that are removed. The number of kings among the remaining 26 cards is 4X4-X.
The number of ways to choose 26 cards to remove from the 52 cards is (5226)\binom{52}{26}.
The number of ways to choose XX kings from the 4 kings and 26X26-X non-kings from the 48 non-kings is (4X)(4826X)\binom{4}{X} \binom{48}{26-X}.
The probability that exactly XX kings are removed is P(X)=(4X)(4826X)(5226)P(X) = \frac{\binom{4}{X} \binom{48}{26-X}}{\binom{52}{26}}.
The possible values for XX are 0,1,2,3,40, 1, 2, 3, 4.

Given that XX kings were removed, there are 4X4-X kings remaining in the deck of 26 cards.
We draw 3 cards from these 26 cards. The total number of ways to draw 3 cards is (263)\binom{26}{3}.
The number of ways to draw 3 kings from the 4X4-X kings is (4X3)\binom{4-X}{3}.
The probability of drawing 3 kings from the remaining 26 cards, given that XX kings were removed, is P(3 kingsX)=(4X3)(263)P(\text{3 kings} | X) = \frac{\binom{4-X}{3}}{\binom{26}{3}}.
Note that (4X3)=0\binom{4-X}{3} = 0 if 4X<34-X < 3, i.e., if X>1X > 1. So, we only need to consider the cases X=0X=0 and X=1X=1.

The total probability of drawing 3 kings is given by the law of total probability:
P(3 kings)=X=04P(3 kingsX)P(X)P(\text{3 kings}) = \sum_{X=0}^{4} P(\text{3 kings} | X) P(X)
P(3 kings)=P(3 kingsX=0)P(X=0)+P(3 kingsX=1)P(X=1)P(\text{3 kings}) = P(\text{3 kings} | X=0) P(X=0) + P(\text{3 kings} | X=1) P(X=1) (since P(3 kingsX)=0P(\text{3 kings} | X) = 0 for X2X \ge 2)

For X=0X=0:
P(X=0)=(40)(4826)(5226)P(X=0) = \frac{\binom{4}{0} \binom{48}{26}}{\binom{52}{26}}
P(3 kingsX=0)=(43)(263)P(\text{3 kings} | X=0) = \frac{\binom{4}{3}}{\binom{26}{3}}
Term for X=0X=0: (43)(263)(40)(4826)(5226)=4×1×(4826)(263)(5226)\frac{\binom{4}{3}}{\binom{26}{3}} \frac{\binom{4}{0} \binom{48}{26}}{\binom{52}{26}} = \frac{4 \times 1 \times \binom{48}{26}}{\binom{26}{3} \binom{52}{26}}

For X=1X=1:
P(X=1)=(41)(4825)(5226)P(X=1) = \frac{\binom{4}{1} \binom{48}{25}}{\binom{52}{26}}
P(3 kingsX=1)=(33)(263)P(\text{3 kings} | X=1) = \frac{\binom{3}{3}}{\binom{26}{3}}
Term for X=1X=1: (33)(263)(41)(4825)(5226)=1×4×(4825)(263)(5226)\frac{\binom{3}{3}}{\binom{26}{3}} \frac{\binom{4}{1} \binom{48}{25}}{\binom{52}{26}} = \frac{1 \times 4 \times \binom{48}{25}}{\binom{26}{3} \binom{52}{26}}

P(3 kings)=4(4826)(263)(5226)+4(4825)(263)(5226)P(\text{3 kings}) = \frac{4 \binom{48}{26}}{\binom{26}{3} \binom{52}{26}} + \frac{4 \binom{48}{25}}{\binom{26}{3} \binom{52}{26}}
P(3 kings)=4(263)(5226)((4826)+(4825))P(\text{3 kings}) = \frac{4}{\binom{26}{3} \binom{52}{26}} \left( \binom{48}{26} + \binom{48}{25} \right)
Using the identity (nk)+(nk1)=(n+1k)\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}, we have (4826)+(4825)=(4926)\binom{48}{26} + \binom{48}{25} = \binom{49}{26}.
P(3 kings)=4(4926)(263)(5226)P(\text{3 kings}) = \frac{4 \binom{49}{26}}{\binom{26}{3} \binom{52}{26}}

Now, let's expand the combinations:
(263)=26×25×243×2×1=26×25×4=2600\binom{26}{3} = \frac{26 \times 25 \times 24}{3 \times 2 \times 1} = 26 \times 25 \times 4 = 2600
(4926)=49!26!23!\binom{49}{26} = \frac{49!}{26! 23!}
(5226)=52!26!26!\binom{52}{26} = \frac{52!}{26! 26!}

P(3 kings)=4×49!26!23!26×25×246×52!26!26!P(\text{3 kings}) = \frac{4 \times \frac{49!}{26! 23!}}{\frac{26 \times 25 \times 24}{6} \times \frac{52!}{26! 26!}}
P(3 kings)=4×49!×6×26!×26!26!23!×26×25×24×52!P(\text{3 kings}) = \frac{4 \times 49! \times 6 \times 26! \times 26!}{26! 23! \times 26 \times 25 \times 24 \times 52!}
P(3 kings)=24×49!×26!23!×26×25×24×52!P(\text{3 kings}) = \frac{24 \times 49! \times 26!}{23! \times 26 \times 25 \times 24 \times 52!}
Cancel out 24:
P(3 kings)=49!×26!23!×26×25×52!P(\text{3 kings}) = \frac{49! \times 26!}{23! \times 26 \times 25 \times 52!}
Expand factorials: 26!=26×25×24×23!26! = 26 \times 25 \times 24 \times 23! and 52!=52×51×50×49!52! = 52 \times 51 \times 50 \times 49!
P(3 kings)=49!×(26×25×24×23!)23!×26×25×(52×51×50×49!)P(\text{3 kings}) = \frac{49! \times (26 \times 25 \times 24 \times 23!)}{23! \times 26 \times 25 \times (52 \times 51 \times 50 \times 49!)}
Cancel out 49!49!, 23!23!, 2626, 2525:
P(3 kings)=2452×51×50P(\text{3 kings}) = \frac{24}{52 \times 51 \times 50}
P(3 kings)=2452×51×50=1226×51×50=613×51×50=313×51×25P(\text{3 kings}) = \frac{24}{52 \times 51 \times 50} = \frac{12}{26 \times 51 \times 50} = \frac{6}{13 \times 51 \times 50} = \frac{3}{13 \times 51 \times 25}
Since 51=3×1751 = 3 \times 17:
P(3 kings)=313×(3×17)×25=113×17×25P(\text{3 kings}) = \frac{3}{13 \times (3 \times 17) \times 25} = \frac{1}{13 \times 17 \times 25}

13×17=22113 \times 17 = 221
13×17×25=221×25=552513 \times 17 \times 25 = 221 \times 25 = 5525.
The probability is 15525\frac{1}{5525}.

Comparing this with the given options:
(A) 1(25)(17)(13)=125×17×13=15525\frac{1}{(25)(17)(13)} = \frac{1}{25 \times 17 \times 13} = \frac{1}{5525}
(B) 1(25)(15)(13)=14875\frac{1}{(25)(15)(13)} = \frac{1}{4875}
(C) 1(52)(17)(13)=111492\frac{1}{(52)(17)(13)} = \frac{1}{11492}
(D) 1(25)(51)(13)=116575\frac{1}{(25)(51)(13)} = \frac{1}{16575}

Option (A) matches our calculated probability.

The final answer is 1(25)(17)(13)\boxed{\frac{1}{(25)(17)(13)}}.

Explanation of the solution:
Let XX be the number of kings removed among the first 26 cards. The number of remaining kings is 4X4-X.
The probability of removing XX kings is P(X)=(4X)(4826X)(5226)P(X) = \frac{\binom{4}{X}\binom{48}{26-X}}{\binom{52}{26}}.
Given XX, the probability of drawing 3 kings from the remaining 26 cards is P(3KX)=(4X3)(263)P(3K|X) = \frac{\binom{4-X}{3}}{\binom{26}{3}}.
The total probability is P(3K)=X=04P(3KX)P(X)P(3K) = \sum_{X=0}^4 P(3K|X)P(X).
P(3K)=P(3K0)P(0)+P(3K1)P(1)P(3K) = P(3K|0)P(0) + P(3K|1)P(1) (since P(3KX)=0P(3K|X)=0 for X2X \ge 2).
P(3K)=(43)(263)(40)(4826)(5226)+(33)(263)(41)(4825)(5226)P(3K) = \frac{\binom{4}{3}}{\binom{26}{3}} \frac{\binom{4}{0}\binom{48}{26}}{\binom{52}{26}} + \frac{\binom{3}{3}}{\binom{26}{3}} \frac{\binom{4}{1}\binom{48}{25}}{\binom{52}{26}}
P(3K)=1(263)(5226)((43)(4826)+(41)(4825))P(3K) = \frac{1}{\binom{26}{3}\binom{52}{26}} \left( \binom{4}{3}\binom{48}{26} + \binom{4}{1}\binom{48}{25} \right)
P(3K)=1(263)(5226)(4(4826)+4(4825))P(3K) = \frac{1}{\binom{26}{3}\binom{52}{26}} \left( 4\binom{48}{26} + 4\binom{48}{25} \right)
P(3K)=4(263)(5226)((4826)+(4825))=4(4926)(263)(5226)P(3K) = \frac{4}{\binom{26}{3}\binom{52}{26}} \left( \binom{48}{26} + \binom{48}{25} \right) = \frac{4\binom{49}{26}}{\binom{26}{3}\binom{52}{26}}
Substitute the values of combinations and simplify:
(263)=2600\binom{26}{3} = 2600
(4926)=49!26!23!\binom{49}{26} = \frac{49!}{26!23!}
(5226)=52!26!26!\binom{52}{26} = \frac{52!}{26!26!}
P(3K)=4×49!26!23!26001×52!26!26!=4×49!×26!×26!26!23!×2600×52!P(3K) = \frac{4 \times \frac{49!}{26!23!}}{\frac{2600}{1} \times \frac{52!}{26!26!}} = \frac{4 \times 49! \times 26! \times 26!}{26! 23! \times 2600 \times 52!}
P(3K)=4×49!×(26×25×24×23!)23!×2600×(52×51×50×49!)P(3K) = \frac{4 \times 49! \times (26 \times 25 \times 24 \times 23!)}{23! \times 2600 \times (52 \times 51 \times 50 \times 49!)}
P(3K)=4×26×25×242600×52×51×50=4×26×25×24(26×100)×52×51×50P(3K) = \frac{4 \times 26 \times 25 \times 24}{2600 \times 52 \times 51 \times 50} = \frac{4 \times 26 \times 25 \times 24}{(26 \times 100) \times 52 \times 51 \times 50}
P(3K)=4×25×24100×52×51×50=100×24100×52×51×50=2452×51×50P(3K) = \frac{4 \times 25 \times 24}{100 \times 52 \times 51 \times 50} = \frac{100 \times 24}{100 \times 52 \times 51 \times 50} = \frac{24}{52 \times 51 \times 50}
P(3K)=2452×51×50=1226×51×50=613×51×50=313×51×25=313×(3×17)×25=113×17×25P(3K) = \frac{24}{52 \times 51 \times 50} = \frac{12}{26 \times 51 \times 50} = \frac{6}{13 \times 51 \times 50} = \frac{3}{13 \times 51 \times 25} = \frac{3}{13 \times (3 \times 17) \times 25} = \frac{1}{13 \times 17 \times 25}.

The final answer is 113×17×25\frac{1}{13 \times 17 \times 25}.

The final answer is 1(25)(17)(13)\boxed{\frac{1}{(25)(17)(13)}}.