Solveeit Logo

Question

Mathematics Question on Variance and Standard Deviation

From a lot of 12 items containing 3 defectives, a sample of 5 items is drawn at random. Let the random variable XX denote the number of defective items in the sample. Let items in the sample be drawn one by one without replacement. If the variance of XX is mn\frac{m}{n}, where gcd(m,n)=1\gcd(m, n) = 1, then nmn - m is equal to ________.

Answer

a=1(35)(125)a = 1 - \frac{\binom{3}{5}}{\binom{12}{5}}
b=3(94)(125)b = 3 \cdot \frac{\binom{9}{4}}{\binom{12}{5}}
c=3(93)(125)c = 3 \cdot \frac{\binom{9}{3}}{\binom{12}{5}}
d=1(92)(125)d = 1 \cdot \frac{\binom{9}{2}}{\binom{12}{5}}
u=0a+1b+2c+3d=1.25u = 0 \cdot a + 1 \cdot b + 2 \cdot c + 3 \cdot d = 1.25
σ2=0a+1b+4c+9du2\sigma^2 = 0 \cdot a + 1 \cdot b + 4 \cdot c + 9 \cdot d - u^2
σ2=105176\sigma^2 = \frac{105}{176}
Ans.176105=71\text{Ans.} \quad 176 - 105 = 71