Solveeit Logo

Question

Question: From a fixed point A on the circumference of a circle of radius r, the perpendicular AY is let fall ...

From a fixed point A on the circumference of a circle of radius r, the perpendicular AY is let fall on the tangent at P. The maximum area of the triangle APY is-

A

r2

B

334\frac{3\sqrt{3}}{4}r2

C

338\frac{3\sqrt{3}}{8}r2

D

3\sqrt{3}r2

Answer

338\frac{3\sqrt{3}}{8}r2

Explanation

Solution

OP ^ PY

ŠAPY = 90 – q OPA = q

ŠPAY = q

Now DOPA

AP2 = r2 + r2 – 2rr cos (p – 2q) = 4r2cos2q

AP = 2r cos2q PY = AP sin q = r sin2q

AY = AP cos q = 2Y cos 2q

\ Area of DAPY = 1/2 PY. AY

= r2sin2q cos2q

dΔdθ\frac{d\Delta}{d\theta} = r2 [2cos 2q cos2q – sin2 2q] = 0

q = π2,π6\frac{\pi}{2},\frac{\pi}{6}

q ¹ π2\frac{\pi}{2} D is maximum at q = π6\frac{\pi}{6}

Dmax = r2 . 32\frac{\sqrt{3}}{2}. (32)2\left( \frac{\sqrt{3}}{2} \right)^{2} = 33r28\frac{3\sqrt{3}r^{2}}{8}